Persistence barcodes for shapes

In this paper, we initiate a study of shape description and classification via the application of persistent homology to two tangential constructions on geometric objects. Our techniques combine the differentiating power of geometry with the classifying power of topology. The homology of our first construction, the tangent complex, can distinguish between topologically identical shapes with different "sharp" features, such as corners. To capture "soft" curvature-dependent features, we define a second complex, the filtered tangent complex, obtained by parametrizing a family of increasing subcomplexes of the tangent complex. Applying persistent homology, we obtain a shape descriptor, called a barcode, that is a finite union of intervals. We define a metric over the space of such intervals, arriving at a continuous invariant that reflects the geometric properties of shapes. We illustrate the power of our methods through a number of detailed studies of parametrized families of mathematical shapes.

[1]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[2]  H. Fédérer Geometric Measure Theory , 1969 .

[3]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .

[4]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[5]  S. Donaldson Geometry of four-manifolds , 1990 .

[6]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[7]  Robert B. Fisher From Surfaces to Objects: Computer Vision and Three Dimensional Scene Analysis , 1989 .

[8]  T. Fan Describing and Recognizing 3-D Objects Using Surface Properties , 1989, Springer Series in Perception Engineering.

[9]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[10]  Bernard Gostiaux,et al.  Géométrie différentielle : variétés, courbes et surfaces , 1992 .

[11]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[12]  A. Jacobson,et al.  Morphometric tools for landmark data , 1993 .

[13]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[14]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[15]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[16]  Ann B. Lee The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003 .

[17]  Gunnar E. Carlsson,et al.  A geometric framework for sparse matrix problems , 2004, Adv. Appl. Math..

[18]  Leonidas J. Guibas,et al.  A Barcode Shape Descriptor for Curve Point Cloud Data , 2022 .

[19]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[20]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[21]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[22]  R. Ho Algebraic Topology , 2022 .