Critical coupling to Tamm plasmons

The conditions of critical coupling of light to Tamm plasmons are investigated with comprehensive numerical simulations, highlighting the parameters that maximise absorption of incident light in the metal layer. The asymmetric response in reflection and absorption with respect to the direction of incidence is discussed, the two cases yielding different optimal coupling conditions. These findings are relevant for the design of optimised Tamm structures, particularly in applications such as narrow-band thermal emitters, field-enhanced spectroscopy and refractive-index sensing.

[1]  J. Lakowicz,et al.  Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure. , 2014, Analytical biochemistry.

[2]  A. Lemaître,et al.  Lasing in a hybrid GaAs/silver Tamm structure , 2012 .

[3]  G. Shvets,et al.  Critically coupled surface phonon-polariton excitation in silicon carbide. , 2009, Optics letters.

[4]  Haitao Jiang,et al.  Tamm plasmon polaritons in composite structures composed of the metal film and truncated photonic crystals , 2011 .

[5]  Xueming Liu,et al.  Perfect absorber supported by optical Tamm states in plasmonic waveguide. , 2011, Optics express.

[6]  H. Ming,et al.  Effect of metal film thickness on Tamm plasmon-coupled emission. , 2014, Physical chemistry chemical physics : PCCP.

[7]  B. Perrin,et al.  Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light. , 2013, Physical review letters.

[8]  A. Lemaître,et al.  Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. , 2011, Physical review letters.

[9]  Franco Nori,et al.  Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media , 2007, 0708.2653.

[10]  Domenico Solimini,et al.  Waves and Fields , 2016 .

[11]  Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes , 2013 .

[12]  J. M. Chamberlain,et al.  Tamm plasmon-polaritons: First experimental observation , 2010 .

[13]  P. Angelomé,et al.  Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application , 2014 .

[14]  Shanhui Fan,et al.  Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance , 2014 .

[15]  Vladimir Bulović,et al.  Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. , 2006, Optics letters.

[16]  Hong Chen,et al.  Efficient third-harmonic generation based on Tamm plasmon polaritons. , 2013, Optics letters.

[17]  A. Amir,et al.  Elucidating the stop bands of structurally colored systems through recursion , 2012, 1209.3776.

[18]  A. Lemaître,et al.  Emission of Tamm plasmon/exciton polaritons , 2009 .

[19]  K. J. Dean,et al.  Waves and Fields in Optoelectronics: Prentice-Hall Series in Solid State Physical Electronics , 1984 .

[20]  Bong Jae Lee,et al.  Coherent thermal emission from one-dimensional photonic crystals , 2005 .

[21]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[22]  S. Brand,et al.  Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface , 2009 .

[23]  Jorge Gaspar-Armenta,et al.  Photonic surface-wave excitation: photonic crystal–metal interface , 2003 .

[24]  Kihong Kim,et al.  Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures. , 2013, Optics express.

[25]  J. M. Chamberlain,et al.  Tamm plasmon polaritons: Slow and spatially compact light , 2008 .

[26]  I. Shelykh,et al.  Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors. , 2012, Optics letters.

[27]  J. Lakowicz,et al.  Tamm State-Coupled Emission: Effect of Probe Location and Emission Wavelength , 2014, The journal of physical chemistry. C, Nanomaterials and interfaces.

[28]  S. Herminghaus,et al.  Attenuated total reflectance as a quantum interference phenomenon. , 1994, Optics letters.

[29]  H. Macleod,et al.  Thin-Film Optical Filters, Fourth Edition , 2010 .

[30]  Hai-Qing Lin,et al.  Heterostructure-based optical absorbers , 2010 .

[31]  I. Timofeev,et al.  Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion , 2013 .

[32]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[33]  J. M. Chamberlain,et al.  Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror , 2007 .

[34]  R. Rapaport,et al.  Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects. , 2014, ACS nano.

[35]  Eric C. Le Ru,et al.  Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects , 2008 .

[36]  H. Yang,et al.  Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3 distributed Bragg reflector – Ag interface , 2011 .