Photoresponsive nanoporous membranes, composed of monosized pores modified with azobenzene ligands, were prepared on an ITO working electrode using an evaporation-induced self-assembly procedure. They exhibited the size-selective photoregulated mass transport of two ferrocene-based molecular probes through the membrane to the electrode surface as determined using a chronoamperometry technique. The measured oxidative current increased and decreased in response to alternating UV and visible light exposure correlating strongly with the photoisomerization state of the azobenzene ligands. This indicates that the optically switchable conformation (trans or cis) of azobenzene ligands controls the effective pore size and, correspondingly, transport behavior on the nanoscale.