Ultrahigh-capacity non-periodic photon sieves operating in visible light

Miniaturization of optical structures makes it possible to control light at the nanoscale, but on the other hand it imposes a challenge of accurately handling numerous unit elements in a miniaturized device with aperiodic and random arrangements. Here, we report both the new analytical model and experimental demonstration of the photon sieves with ultrahigh-capacity of subwavelength holes (over 34 thousands) arranged in two different structural orders of randomness and aperiodicity. The random photon sieve produces a uniform optical hologram with high diffraction efficiency and free from twin images that are usually seen in conventional holography, while the aperiodic photon sieve manifests sub-diffraction-limit focusing in air. A hybrid approach is developed to make the design of random and aperiodic photon sieve viable for high-accuracy control of the amplitude, phase and polarization of visible light. The polarization independence of the photon sieve will also greatly benefit its applications in optical imaging and spectroscopy.

[1]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[2]  Yunuen Montelongo,et al.  Plasmonic nanoparticle scattering for color holograms , 2014, Proceedings of the National Academy of Sciences.

[3]  Yaoyu Cao,et al.  Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size , 2013, Nature Communications.

[4]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[7]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .

[8]  Jörgen Bengtsson,et al.  Robust design method for highly efficient beam-shaping diffractive optical elements using an iterative-Fourier-transform algorithm with soft operations , 2000 .

[9]  Kun Huang,et al.  Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system. , 2011, Optics letters.

[10]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[11]  Haider Butt,et al.  Carbon Nanotube Based High Resolution Holograms , 2012, Advanced materials.

[12]  Y Ichioka,et al.  Halftone plotter and its applications to digital optical information processing. , 1969, Applied optics.

[13]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[14]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[15]  Jinghua Teng,et al.  Optimization‐free superoscillatory lens using phase and amplitude masks , 2014 .

[16]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[17]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[18]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[19]  Yongkeun Park,et al.  Subwavelength light focusing using random nanoparticles , 2013, Nature Photonics.

[20]  A. Boudrioua Optical Waveguide Theory , 2010 .

[21]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[22]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[23]  Emmett N. Leith,et al.  Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects* , 1964 .

[24]  D. Zueco,et al.  Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness , 2008, 0808.2873.

[25]  S. Maier,et al.  Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering , 2013, Scientific Reports.

[26]  N. Zheludev,et al.  Nanohole array as a lens. , 2008, Nano letters.

[27]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[28]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[29]  A. Kildishev,et al.  Holey-metal lenses: sieving single modes with proper phases. , 2013, Nano letters.

[30]  이기수,et al.  II. , 1992 .

[31]  D C O'Shea,et al.  Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens. , 1995, Applied optics.

[32]  R. J. Bell,et al.  Generalized Laws of Refraction and Reflection , 1969 .

[33]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[34]  Nikolay I. Zheludev,et al.  Focusing of Light by a Nano-Hole Array , 2006 .

[35]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[36]  Dennis Gabor,et al.  Interference Microscope with Total Wavefront Reconstruction , 1966 .

[37]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[38]  D. Gabor A New Microscopic Principle , 1948, Nature.

[39]  Barton,et al.  Removing multiple scattering and twin images from holographic images. , 1991, Physical review letters.

[40]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[41]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[42]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[43]  T. Latychevskaia,et al.  Solution to the twin image problem in holography. , 2006, Physical review letters.

[44]  Nikolay Zheludev,et al.  Focusing of light by a nanohole array , 2007 .

[45]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[46]  Ann Roberts,et al.  Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen , 1987 .

[47]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[48]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[49]  C. Poulton,et al.  Absorption enhancing proximity effects in aperiodic nanowire arrays. , 2013, Optics express.

[50]  Y Ichioka,et al.  Scanning halftone plotter and computer-generated continuous-tone hologram. , 1971, Applied optics.

[51]  T. Chong,et al.  Principle and design approach of flat nano-metallic surface plasmonic lens , 2007 .