Liouvillian of the Open STIRAP Problem

With the corresponding Liouvillian as a starting point, we demonstrate two seemingly new phenomena of the STIRAP problem when subjected to irreversible losses. It is argued that both of these can be understood from an underlying Zeno effect, and in particular both can be viewed as if the environment assists the STIRAP population transfer. The first of these is found for relative strong dephasing, and, in the language of the Liouvillian, it is explained from the explicit form of the matrix generating the time-evolution; the coherence terms of the state decay off, which prohibits further population transfer. For pure dissipation, another Zeno effect is found, where the presence of a non-zero Liouvillian gap protects the system’s (adiabatic) state from non-adiabatic excitations. In contrast to full Zeno freezing of the evolution, which is often found in many problems without explicit time-dependence, here, the freezing takes place in the adiabatic basis such that the system still evolves but adiabatically.

[1]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[2]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[3]  Saverio Pascazio,et al.  The Geometric Phase in Quantum Systems , 2003 .

[4]  Daniel A. Lidar,et al.  Decoherence-induced geometric phase in a multilevel atomic system , 2006, quant-ph/0612201.

[5]  D. A. Lidar,et al.  Adiabatic approximation in open quantum systems , 2005 .

[6]  Z. R. Wasilewski,et al.  Coherent control of three-spin states in a triple quantum dot , 2011, Nature Physics.

[7]  P. A. Ivanov,et al.  Effect of dephasing on stimulated Raman adiabatic passage (8 pages) , 2004 .

[8]  M. Gu,et al.  Unconditional preparation of entanglement between atoms in cascaded optical cavities. , 2003, Physical review letters.

[9]  N. Vitanov,et al.  Spontaneous emission in stimulated Raman adiabatic passage , 2005 .

[10]  Jacques Mimran,et al.  Principles of the Quantum Control of Molecular Processes , 2018 .

[11]  J. Cirac,et al.  Dissipative phase transition in a central spin system , 2012, 1205.3341.

[12]  I. Rotter,et al.  Collectivity, phase transitions and exceptional points in open quantum systems , 1998, quant-ph/9805038.

[13]  Herbert Spohn,et al.  An algebraic condition for the approach to equilibrium of an open N-level system , 1977 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  S. R. Garner,et al.  Coherent control of optical information with matter wave dynamics , 2007, Nature.

[16]  Ingrid Rotter,et al.  A non-Hermitian Hamilton operator and the physics of open quantum systems , 2009 .

[17]  Frank Jensen,et al.  Efficient coherent internal state transfer in trapped ions using stimulated Raman adiabatic passage , 2006, quant-ph/0608089.

[18]  N. Vitanov,et al.  Stimulated Raman adiabatic passage in an open quantum system: Master equation approach , 2010, 1003.3616.

[19]  D. Lidar,et al.  Adiabatic quantum computation in open systems. , 2005, Physical review letters.

[20]  N. Vitanov,et al.  POPULATION TRANSFER VIA A DECAYING STATE , 1997 .

[21]  R. Bertlmann,et al.  Bloch vectors for qudits , 2008, 0806.1174.

[22]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[23]  Daniel A. Lidar,et al.  Adiabaticity in open quantum systems , 2007, 1508.05558.

[24]  S. Kehrein,et al.  Power-law approach to steady state in open lattices of noninteracting electrons , 2014, 1406.1408.

[25]  Nikolay V. Vitanov,et al.  Stimulated Raman adiabatic passage in physics, chemistry, and beyond , 2016, 1605.00224.

[26]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[27]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[28]  J. Larson,et al.  Dynamics of non-equilibrium steady state quantum phase transitions , 2017, 1712.01560.

[29]  B. Shore,et al.  Manipulating Quantum Structures Using Laser Pulses by Bruce W. Shore , 2011 .

[30]  G. Kimura The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.

[31]  Zi Cai,et al.  Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems. , 2013, Physical review letters.

[32]  Oleg N. Kirillov,et al.  Geometric phase around exceptional points , 2005, Physical Review A.

[33]  Howard Georgi,et al.  Lie Algebras in Particle Physics , 1982 .

[34]  N. Vitanov,et al.  Laser-induced population transfer by adiabatic passage techniques. , 2001, Annual review of physical chemistry.

[35]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.

[36]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[37]  A. Mostafazadeh,et al.  Geometric Phase for Non-Hermitian Hamiltonians and Its Holonomy Interpretation , 2008, 0807.3405.

[38]  S. Goyal,et al.  Geometry of the generalized Bloch sphere for qutrits , 2011, 1111.4427.

[39]  J. Eberly,et al.  N-Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics , 1981 .

[40]  W. Ketterle,et al.  Observation of Metastable States in Spinor Bose-Einstein Condensates , 1999 .

[41]  Armin Rahmani,et al.  Anti-Kibble-Zurek Behavior in Crossing the Quantum Critical Point of a Thermally Isolated System Driven by a Noisy Control Field. , 2016, Physical review letters.

[42]  W. Heiss,et al.  Exceptional points of non-Hermitian operators , 2003, quant-ph/0304152.

[43]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[44]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[45]  N. Vitanov,et al.  Detuning effects in STIRAP processes in the presence of quantum noise , 2011 .