Boundary layers and quasi-neutral limit in steady state Euler–Poisson equations for potential flows

We study the quasi-neutral limit in the steady state Euler–Poisson system for potential flows. Boundary layers occur when the boundary conditions are not in equilibrium. We perform a formal asymptotic expansion of solutions and derive the boundary layer equations. Under the subsonic condition on the boundary and the smallness assumption on the data, the existence, uniqueness and exponential decay of the boundary layer profiles are proved by applying the centre manifold theorem to a dynamical system. We also give a rigorous justification of the asymptotic expansion up to first order in one space dimension.

[1]  Pierre Degond,et al.  On a one-dimensional steady-state hydrodynamic model , 1990 .

[2]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[3]  Haim Brezis,et al.  Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas , 1995 .

[4]  Yue-Jun Peng,et al.  Some asymptotic analysis in steady‐state Euler–Poisson equations for potential flow , 2003 .

[5]  E. Grenier,et al.  Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .

[6]  Yue-Jun Peng,et al.  Convergence of compressible Euler-Poisson equations to incompressible type Euler equations , 2005 .

[7]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[8]  Marshall Slemrod,et al.  Quasi-Neutral Limit for Euler-Poisson System , 2001, J. Nonlinear Sci..

[9]  Irene M. Gamba,et al.  A viscous approximation for a 2‐D steady semiconductor or transonic gas dynamic flow: Existence theorem for potential flow , 1996 .

[10]  Nancy Kopell,et al.  Bifurcations and trajectories joining critical points , 1975 .

[11]  Pierre Degond,et al.  A steady state potential flow model for semiconductors , 1993 .

[12]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[13]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[14]  Paul C. Fife,et al.  Semilinear elliptic boundary value problems with small parameters , 1973 .

[15]  N. Kopell,et al.  Bifurcations Under Nongeneric Conditions , 1974 .

[16]  Irene M. Gamba Stationary transonic solutions of a one—dimensional hydrodynamic model for semiconductors , 1992 .

[17]  Emmanuel Grenier,et al.  Boundary Layers for Viscous Perturbations of Noncharacteristic Quasilinear Hyperbolic Problems , 1998 .