H3PO4-Induced Nano-Li3PO4 Pre-reduction Layer to Address Instability between the Nb-Doped Li7La3Zr2O12 Electrolyte and Metallic Li Anode.

Solid-state batteries based on a metallic Li anode and nonflammable solid electrolytes (SEs) are anticipated to achieve high energy and power densities with absolute safety. In particular, cubic garnet-type Nb-doped Li7La3Zr2O12 (Nb-LLZO) SEs possess superior ionic conductivity, are feasible to prepare under ambient conditions, have strong thermal stability, and are of low cost. However, the interfacial compatibility with Li metal and Li dendrite hazards still hinder the applications of Nb-LLZO. Herein, a quick and efficient solution was applied to address this issue, generating a nano-Li3PO4 pre-reduction layer from the reaction of H3PO4 with the ion-exchanged passivation layer (Li2CO3/LiOH) on the surface of Nb-LLZO. A lithiophilic, electrically insulating interlayer is in situ created when the Li3PO4 modified layer interacts with molten Li, successfully preventing the reduction of Nb5+. The interlayer, which mostly consists of Li3P and Li3PO4, also has a high shear modulus and relatively high Li+ conductivity, which effectively inhibit the growth of Li dendrites. The Li|Li3PO4|Nb-LLZO|Li3PO4|Li symmetric cells stably cycled for over 5000 h at 0.05 mA cm-2 and over 1000 h at a high rate of 0.15 mA cm-2 without any short circuits. The LiFePO4 and S/C hybrid solid-state batteries using the modified Nb-LLZO electrolyte also demonstrated good electrochemical performances, confirming the practical application of this interfacial engineering in various solid-state battery systems. This work offers an efficient solution to the instability issue between the Nb-LLZO SE and metallic Li anode.

[1]  Yangyang Liu,et al.  Alloyable Viscous Fluid for Interface Welding of Garnet Electrolyte to Enable Highly Reversible Fluoride Conversion Solid State Batteries , 2022, Advanced Functional Materials.

[2]  Yangyang Liu,et al.  Enable high reversibility of Fe/Cu based fluoride conversion batteries via interfacial gas release and detergency of garnet electrolytes , 2022, Materials Today.

[3]  Bingbing Tian,et al.  Developing Preparation Craft Platform for Solid Electrolytes Containing Volatile Components: Experimental Study of Competition between Lithium Loss and Densification in Li7La3Zr2O12. , 2022, ACS applied materials & interfaces.

[4]  H. Xiang,et al.  Interfacial optimization between cathode and 20 μm-thickness solid electrolyte membrane via in-situ polymerization for lithium metal batteries , 2022, Journal of Power Sources.

[5]  Bingbing Tian,et al.  From protonation & Li-rich contamination to grain-boundary segregation: evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte , 2022, Journal of Energy Chemistry.

[6]  Bingbing Tian,et al.  Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy , 2022, Nano Research.

[7]  Z. Wen,et al.  Improvement of Density and Electrochemical Performance of Garnet-Type Li7la3zr2o12 for Solid-State Lithium Metal Batteries Enabled by W and Ta Co-Doping Strategy , 2022, SSRN Electronic Journal.

[8]  Yunhui Huang,et al.  Negating Li+ transfer barrier at solid-liquid electrolyte interface in hybrid batteries , 2022, Chem.

[9]  Jian-Fang Wu,et al.  Ten Micrometer Thick Polyethylene Separator Modified by α-LiAlO2@γ-Al2O3 Nanosheets for Simultaneous Suppression of Li Dendrite Growth and Polysulfide Shuttling in Li-S Batteries , 2022, Materials Today Energy.

[10]  W. Luo,et al.  Magnetic Actuation Enables Programmable Lithium Metal Engineering , 2022 .

[11]  Yunhui Huang,et al.  A self-regulated gradient interphase for dendrite-free solid-state Li batteries , 2022, Energy & Environmental Science.

[12]  S. Cheng,et al.  Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability , 2021, Chemical Engineering Journal.

[13]  Rui Zhang,et al.  The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes , 2021, Science advances.

[14]  Yunhui Huang,et al.  TiO2 Nanofiber-Modified Lithium Metal Composite Anode for Solid-State Lithium Batteries. , 2021, ACS applied materials & interfaces.

[15]  B. Polzin,et al.  Stoichiometric irreversibility of aged garnet electrolytes , 2021, Materials Today Energy.

[16]  M. Kovalenko,et al.  Break-Even Analysis of All-Solid-State Batteries with Li-Garnet Solid Electrolytes , 2021, ACS Energy Letters.

[17]  Bingbing Tian,et al.  Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics , 2021 .

[18]  X. Sun,et al.  Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics , 2021 .

[19]  L. Arava,et al.  An All-Solid-State Battery with a Tailored Electrode–Electrolyte Interface Using Surface Chemistry and Interlayer-Based Approaches , 2021 .

[20]  Jianlin Li,et al.  Recent progress and future prospects of atomic layer deposition to prepare/modify solid-state electrolytes and interfaces between electrodes for next-generation lithium batteries , 2021, Nanoscale advances.

[21]  Z. Wen,et al.  Robust Conversion-Type Li/Garnet interphases from metal salt solutions , 2021 .

[22]  Chen‐Zi Zhao,et al.  Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies , 2021, Advanced Functional Materials.

[23]  Zachary D. Hood,et al.  Processing thin but robust electrolytes for solid-state batteries , 2021, Nature Energy.

[24]  A. Tiwari,et al.  Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte , 2020, Communications Materials.

[25]  Z. Wen,et al.  A 3D Cross‐Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnet‐Type Solid‐State Lithium Batteries , 2020, Advanced Functional Materials.

[26]  P. Slater,et al.  X-ray pair distribution function analysis and electrical and electrochemical properties of cerium doped Li5La3Nb2O12 garnet solid-state electrolyte. , 2020, Dalton transactions.

[27]  Xuejun Zhou,et al.  Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting , 2020, Nature Communications.

[28]  Qingping Wu,et al.  Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte to Enable Ultralong Cycling Solid-State Li-FeF3 Conversion Batteries. , 2020, ACS applied materials & interfaces.

[29]  Yan Yu,et al.  Lithium Difluorophosphate‐Based Dual‐Salt Low Concentration Electrolytes for Lithium Metal Batteries , 2020, Advanced Energy Materials.

[30]  Ruopian Fang,et al.  Reliable liquid electrolytes for lithium metal batteries , 2020 .

[31]  Xiulin Fan,et al.  Tuning the Anode–Electrolyte Interface Chemistry for Garnet‐Based Solid‐State Li Metal Batteries , 2020, Advanced materials.

[32]  W. Jaegermann,et al.  The Effect of Interfacial Charge Distribution on Chemical Compatibility and Stability of the High Voltage Electrodes (LiCoPO4, LiNiPO4)/Solid Electrolyte (LiPON) Interface , 2020, Advanced Materials Interfaces.

[33]  Xiangming He,et al.  Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode , 2020, Nano Research.

[34]  Chilin Li,et al.  Garnet-Based Solid-State Lithium Fluoride Conversion Batteries Benefiting from Eutectic Interlayer of Superior Wettability , 2020 .

[35]  Huaihe Song,et al.  Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries , 2020 .

[36]  Jun Lu,et al.  Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide , 2020, Nature Communications.

[37]  H. Duan,et al.  Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling , 2019, Advanced Functional Materials.

[38]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[39]  Z. Wen,et al.  Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte , 2019, Energy Storage Materials.

[40]  Jiaqi Huang,et al.  Plating/Stripping Behavior of Actual Lithium Metal Anode , 2019, Advanced Energy Materials.

[41]  J. Janek,et al.  Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure , 2019, Advanced Energy Materials.

[42]  Chen‐Zi Zhao,et al.  Artificial Interphases for Highly Stable Lithium Metal Anode , 2019, Matter.

[43]  Z. Wen,et al.  Acid induced conversion towards a robust and lithiophilic interface for Li–Li7La3Zr2O12 solid-state batteries , 2019, Journal of Materials Chemistry A.

[44]  Jiujun Zhang,et al.  Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries , 2019, Energy Storage Materials.

[45]  Hong Li,et al.  Practical Evaluation of Li-Ion Batteries , 2019, Joule.

[46]  Peter Zapol,et al.  Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal , 2019, Advanced Energy Materials.

[47]  Z. Wen,et al.  Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces , 2018, Energy Storage Materials.

[48]  Z. Wen,et al.  An in situ element permeation constructed high endurance Li–LLZO interface at high current densities , 2018 .

[49]  Z. Wen,et al.  None-Mother-Powder Method to Prepare Dense Li-Garnet Solid Electrolytes with High Critical Current Density , 2018, ACS Applied Energy Materials.

[50]  Yan Yu,et al.  Advanced 3D Current Collectors for Lithium‐Based Batteries , 2018, Advanced materials.

[51]  Kevin N. Wood,et al.  Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes , 2018, Nature Communications.

[52]  Wu Xu,et al.  Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. , 2018, ACS applied materials & interfaces.

[53]  Xi Chen,et al.  Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. , 2018, Journal of the American Chemical Society.

[54]  N. Imanishi,et al.  Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6.25M0.25La3Zr2O12 (M: Al3 + and Ga3 +) , 2017 .

[55]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[56]  Donald J. Siegel,et al.  Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance , 2017 .

[57]  Biyi Xu,et al.  Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2 , 2017 .

[58]  R. Murugan,et al.  Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications , 2017 .

[59]  S. Shi,et al.  A review on structural characteristics, lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyte Li3xLa2∕3–xTiO3 , 2017 .

[60]  Xiulei Ji,et al.  NASICON‐Structured Materials for Energy Storage , 2017, Advanced materials.

[61]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[62]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[63]  Donald J. Siegel,et al.  Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12 , 2017 .

[64]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[65]  Z. Wen,et al.  Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries. , 2016, ACS Applied Materials and Interfaces.

[66]  Lide M. Rodriguez-Martinez,et al.  Estimation of energy density of Li-S batteries with liquid and solid electrolytes , 2016 .

[67]  R. P. Rao,et al.  Effect of Li+/H+ exchange in water treated Ta-doped Li7La3Zr2O12 , 2016 .

[68]  Ji‐Guang Zhang,et al.  Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes , 2016 .

[69]  Asma Sharafi,et al.  Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium , 2016, Front. Energy Res..

[70]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[71]  B. McCloskey,et al.  Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes. , 2015, The journal of physical chemistry letters.

[72]  Yu Chen,et al.  Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy , 2015 .

[73]  Yutao Li,et al.  The reaction of Li6.5La3Zr1.5Ta0.5O12 with water , 2015 .

[74]  Donald R. Sadoway,et al.  Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.

[75]  J. Sakamoto,et al.  Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li7La3Zr2O12 Garnet Electrolytes , 2014 .

[76]  N. Imanishi,et al.  Ta-Doped Li7La3Zr2O12 for Water-Stable Lithium Electrode of Lithium-Air Batteries , 2014 .

[77]  J. Wolfenstine,et al.  Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature , 2013, Journal of Materials Science.

[78]  Jeff Sakamoto,et al.  Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .

[79]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[80]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .

[81]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[82]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[83]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[84]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[85]  Andrzej Lasia,et al.  The use of regularization methods in the deconvolution of underlying distributions in electrochemical processes , 1999 .

[86]  Liquan Chen,et al.  Candidate compounds with perovskite structure for high lithium ionic conductivity , 1994 .

[87]  John R. Van Wazer,et al.  Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates , 1973 .