Transcendence measures for exponentials and logarithms

Abstract In the present paper, we derive transcendence measures for the numbers log α, eβ, αβ, (log α1)/(log α2) from a previous lower bound of ours on linear forms in the logarithms of algebraic numbers.

[1]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[2]  N. Feldman Approximation of number π by algebraic numbers from special fields , 1977 .

[3]  K. Mahler Applications of some formulae by hermite to the approximation of exponentials and logarithms , 1967 .

[4]  N. Fel'dman,et al.  THE DEVELOPMENT AND PRESENT STATE OF THE THEORY OF TRANSCENDENTAL NUMBERS , 1967 .

[5]  K. Mahler,et al.  On the approximation of logarithms of algebraic numbers , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  Michel Waldschmidt,et al.  A lower bound for linear forms in logarithms , 1980 .

[7]  M. Waldschmidt,et al.  Linear forms and simultaneous approximations , 1977 .

[8]  Pl Pieter Cijsouw On the approximability of the logarithms of algebraic numbers , 1975 .

[9]  Pl Pieter Cijsouw Transcendence measures of certain numbers whose transcendency was proved by A. Baker , 1974 .

[10]  M. Mignotte Approximations rationnelles de $\pi$ et quelques autres nombres , 1974 .

[11]  Pl Pieter Cijsouw Transcendence measures of exponentials and logarithms of algebraic numbers , 1974 .

[12]  G. Belford Vector-Valued Approximation and its Application to Fitting Exponential Decay Curves* , 1974 .

[13]  K. Mahler,et al.  On Some Inequalities for Polynomials in Several Variables , 1962 .

[14]  A. O. Gelʹfond Transcendental and Algebraic Numbers , 1960 .

[15]  K. Mahler On the Approximation of π , 1953 .

[16]  K. Mahler Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I. , 1932 .

[17]  J. Popken,et al.  Zur Transzendenz von eπ . , 1932 .

[18]  J. Popken,et al.  Zur Transzendenz vone , 1929 .

[19]  K. Mahler Zur Approximation der Exponentialfunktion und des Logarithmus. Teil II. , 2022 .