Transcendence measures for exponentials and logarithms
暂无分享,去创建一个
[1] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[2] N. Feldman. Approximation of number π by algebraic numbers from special fields , 1977 .
[3] K. Mahler. Applications of some formulae by hermite to the approximation of exponentials and logarithms , 1967 .
[4] N. Fel'dman,et al. THE DEVELOPMENT AND PRESENT STATE OF THE THEORY OF TRANSCENDENTAL NUMBERS , 1967 .
[5] K. Mahler,et al. On the approximation of logarithms of algebraic numbers , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[6] Michel Waldschmidt,et al. A lower bound for linear forms in logarithms , 1980 .
[7] M. Waldschmidt,et al. Linear forms and simultaneous approximations , 1977 .
[8] Pl Pieter Cijsouw. On the approximability of the logarithms of algebraic numbers , 1975 .
[9] Pl Pieter Cijsouw. Transcendence measures of certain numbers whose transcendency was proved by A. Baker , 1974 .
[10] M. Mignotte. Approximations rationnelles de $\pi$ et quelques autres nombres , 1974 .
[11] Pl Pieter Cijsouw. Transcendence measures of exponentials and logarithms of algebraic numbers , 1974 .
[12] G. Belford. Vector-Valued Approximation and its Application to Fitting Exponential Decay Curves* , 1974 .
[13] K. Mahler,et al. On Some Inequalities for Polynomials in Several Variables , 1962 .
[14] A. O. Gelʹfond. Transcendental and Algebraic Numbers , 1960 .
[15] K. Mahler. On the Approximation of π , 1953 .
[16] K. Mahler. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I. , 1932 .
[17] J. Popken,et al. Zur Transzendenz von eπ . , 1932 .
[18] J. Popken,et al. Zur Transzendenz vone , 1929 .
[19] K. Mahler. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil II. , 2022 .