Nonlinear fracture analysis of piezoelectric ceramics by finite element method

Abstract In this paper, a simple nonlinear constitutive model for piezoelectric ceramics is devised. The model is implemented in a research finite element code and used to study the effect of domain switching and electric nonlinearity on the cracking behavior. J-integrals are computed along contours close to and well away from the crack tip. For linear materials, the computed J-integrals are essentially path independent. With the material nonlinearity considered, the integrals computed at the crack tip vicinity is higher than the ones computed well away from the crack tip. Using the former as the fracture criterion, it is found that crack propagation can be promoted by the electric field.

[1]  Anthony G. Evans,et al.  Electric-field-induced fatigue crack growth in piezoelectrics , 1994 .

[2]  Shiv P. Joshi,et al.  Numerical modeling of PZT nonlinear electromechanical behavior , 1996, Smart Structures.

[3]  Vladimir Z. Parton,et al.  Fracture mechanics of piezoelectric materials , 1976 .

[4]  K. Bathe Finite Element Procedures , 1995 .

[5]  C. Sun,et al.  Fracture Criteria for Piezoelectric Ceramics , 1995 .

[6]  W. Deeg,et al.  The analysis of dislocation, crack, and inclusion problems in piezoelectric solids , 1980 .

[7]  Y. Pak,et al.  Crack Extension Force in a Piezoelectric Material , 1990 .

[8]  Wei Yang,et al.  Switch-toughening of ferroelectrics subjected to electric fields , 1998 .

[9]  Zhigang Suo,et al.  Fracture mechanics for piezoelectric ceramics , 1992 .

[10]  Susmit Kumar,et al.  Effect of the mechanical boundary condition at the crack surfaces on the stress distribution at the crack tip in piezoelectric materials , 1998 .

[11]  H. Gao,et al.  An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture , 1996 .

[12]  Zhigang Suo,et al.  Reliability of ceramic multilayer actuators : A nonlinear finite element simulation , 1996 .

[13]  Robert M. McMeeking,et al.  Electrostrictive stresses near crack-like flaws , 1989 .

[14]  Z Suo,et al.  Models for breakdown-resistant dielectric and ferroelectric ceramics , 1993 .

[15]  Tong-Yi Zhang,et al.  Fracture mechanics for a mode III crack in a piezoelectric material , 1996 .

[16]  D. Fang,et al.  A mesoscopic model of the constitutive behaviour of monocrystalline ferroelectrics , 1997 .

[17]  Y. E. Pak,et al.  Linear electro-elastic fracture mechanics of piezoelectric materials , 1992 .

[18]  Raj N. Singh,et al.  Energy release rate and crack propagation in piezoelectric materials. Part II: Combined mechanical and electrical loads , 1997 .

[19]  Nesbitt W. Hagood,et al.  Nonlinear finite element modeling of phase transitions in electromechanically coupled material , 1996, Smart Structures.

[20]  Y. Fotinich,et al.  Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics , 1998 .

[21]  Raj N. Singh,et al.  Energy Release rate and crack propagation in piezoelectric materials. Part I: Mechanical/electrical load , 1997 .

[22]  Sang-joo Kim A simple continuum model for polarization reversals in ferroelectrics , 1998 .

[23]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[24]  Nesbitt W. Hagood,et al.  Modeling of nonlinear piezoceramics for structural actuation , 1994, Smart Structures.

[25]  Peter J. Chen Three dimensional dynamic electromechanical constitutive relations for ferroelectric materials , 1980 .

[26]  Horacio Sosa,et al.  On the fracture mechanics of piezoelectric solids , 1992 .

[27]  Huajian Gao,et al.  Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic , 1997 .

[28]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—IV. Combined electromechanical loading , 1989 .

[29]  T. Zhu,et al.  Fatigue crack growth in ferroelectrics driven by cyclic electric loading , 1998 .

[30]  P. J. Chen,et al.  One dimensional polar responses of the electrooptic ceramic PLZT 7/65/35 due to domain switching , 1981 .

[31]  Gregory P. Carman,et al.  Moire interferometer applied to a piezoceramic containing a simulated void , 1997, Smart Structures.

[32]  Gregory P. Carman,et al.  Measuring Strain Distribution During Mesoscopic Domain Reorientation in a Ferroelectric Material , 1998 .

[33]  Stephen C. Hwang,et al.  A finite element model of ferroelastic polycrystals , 1999 .

[34]  Xueli Han,et al.  Interacting multiple cracks in piezoelectric materials , 1999 .

[35]  Chandler C. Fulton,et al.  Electrical Nonlinearity in Fracture of Piezoelectric Ceramics , 1997 .

[36]  John T. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1997 .

[37]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[38]  S. Joshi Non-linear constitutive relations for piezoceramic materials , 1992 .

[39]  M. Dunn The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids , 1994 .

[40]  Tong-Yi Zhang,et al.  Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material , 1998 .

[41]  Norman A. Fleck,et al.  The simulation of switching in polycrystalline ferroelectric ceramics , 1998 .

[42]  Gregory P. Carman,et al.  Modeling of polarization switching in piezoceramics , 1998, Smart Structures.

[43]  Natarajan Shankar,et al.  A Fully Coupled Constitutive Model for Electrostrictive Ceramic Materials , 1994 .