A review on minimum energy calculations for ideal and nonideal distillations

The minimum energy requirement of a distillation sets a lower, thermodynamically defined operating limit, which is increasingly important in practice due to growing interest in saving energy. During the conceptual design phase this energy information can also be used to quickly compare distillation configurations. This paper gives a summary of the most important methods published to date for the calculation of the minimum energy requirement. Firstly, the occurrence of so-called pinch zones will be systematically described. These are sections of the column in which at minimum reflux an infinite number of separation stages would be necessary. Then exact and approximating solutions of the problems both for ideal and for nonideal mixtures will be discussed. For ideal mixtures a rapid calculation is possible using the well-known Underwood equations, which can also be applied to complex columns (e.g., several feeds and side products, side stream strippers and enrichers). However, strongly nonideal multicomponent mixtures still require time-consuming simulations of columns having large numbers of plates. In such cases serious convergence problems must often be reckoned with. Recent developments aim at avoiding column simulations and at calculating pinch points directly.

[1]  Donald N. Hanson,et al.  The Exact Calculation of Minimum Flows in Distillation Columns , 1979 .

[2]  W. C. Edmister,et al.  Absorption and stripping‐factor functions for distillation calculation by manual‐ and digital‐computer methods , 1957 .

[3]  E. Blass,et al.  Minimum reflux calculations for nonideal mixtures using the reversible distillation model , 1991 .

[4]  Robert N. Maddox,et al.  Minimum reflux rate for multicomponent distillation systems by rigorous plate calculations , 1962 .

[5]  E. S. Lee Estimation of minimum reflux in distillation and multipoint boundary value problems , 1974 .

[6]  Alfons Vogelpohl Rektifikation von Dreistoffgemischen. Teil 2: Rektifikationslinien realer Gemische und Berechnung der Dreistoffrektifikation , 1964 .

[7]  Neal R. Amundson,et al.  On the steady state fractionation of multicomponent and complex mixtures in an ideal cascade: Part 3. Discussion of the numerical method of calculation , 1955 .

[8]  Z. Fidkowski,et al.  Minimum energy requirements of thermally coupled distillation systems , 1987 .

[9]  Neal R. Amundson,et al.  On the steady state fractionation of multicomponent and complex mixtures in an ideal cascade: Part VI—The effect of variations of the relative volatilities, the flow rates and the plate efficiencies , 1955 .

[10]  J. D. Perkins,et al.  On the dynamics of distillation processes—II. The simple distillation of model solutions , 1978 .

[11]  Michael F. Doherty,et al.  An approximate model for binary azeotropic distillation design , 1984 .

[12]  Michael F. Malone,et al.  Nonideal Multicomponent Distillation: Use of Bifurcation Theory for Design , 1991 .

[13]  Michael F. Malone,et al.  Minimum Vapor Flows in a Distillation Column with a Sidestream Stripper , 1985 .

[14]  The Engineering Foundation , 1940, Nature.

[15]  E. Kirschbaum Destillier- und Rektifiziertechnik , 1940 .

[16]  Minimum reflux behavior of complex distillation columns , 1988 .

[17]  Arthur W. Westerberg,et al.  Temperature-heat diagrams for complex columns. 2. Underwood's method for side strippers and enrichers , 1989 .

[18]  J. R. Knight,et al.  Design and synthesis of homogeneous azeotropic distillations. 5. Columns with nonnegligible heat effects , 1986 .

[19]  Michael F. Malone,et al.  Design of Sidestream Distillation Columns , 1985 .

[20]  Alfons Vogelpohl Die näherungsweise Berechnung der Rektifikation von Gemischen mit binären Azeotropen , 1974 .

[21]  Neal R. Amundson,et al.  On the steady state fractionation of multicomponent and complex mixtures in an ideal cascade: Part 1—Analytic solution of the equations for general mixtures , 1955 .

[22]  Michael F. Doherty,et al.  Design and minimum reflux for heterogeneous azeotropic distillation columns , 1989 .

[23]  Neal R. Amundson,et al.  On the steady state fractionation of multicomponent and complex mixtures in an ideal cascade: Part 5. The extension to packed columns , 1955 .

[24]  A. W. Westerberg,et al.  The product composition regions of single-feed azeotropic distillation columns , 1992 .

[25]  M. Doherty,et al.  Design and synthesis of homogeneous azeotropic distillations. 1. Problem formulation for a single column , 1985 .

[26]  A. Vogelpohl Rektifikation von Dreistoffgemischen. Teil 1: Rektifikation als Stoffaustauschvorgang und Rektifikationslinien idealer Gemische , 1964 .

[27]  H. Hausen Einfluß des Argons auf die Rektifikation der Luft , 1934 .

[28]  N. L. Franklin,et al.  The interpretation of minimum reflux conditions in multi-component distillation , 1997 .

[29]  Arthur W. Westerberg,et al.  Shortcut methods for complex distillation columns. 1. Minimum reflux , 1981 .

[30]  Michael F. Doherty,et al.  Design and synthesis of homogeneous azeotropic distillations. 3. The sequencing of columns for azeotropic and extractive distillations , 1985 .

[31]  C. J. King,et al.  Calculation of Minimum Reflux for Distillation Columns with Multiple Feeds , 1972 .

[32]  Michael F. Doherty,et al.  On the dynamics of distillation processes—III: The topological structure of ternary residue curve maps , 1979 .

[33]  E. Blass,et al.  Best products of homogeneous azeotropic distillations , 1994 .

[34]  Michael F. Doherty,et al.  Geometric nonlinear analysis of multicomponent nonideal distillation: a simple computer-aided design procedure , 1993 .

[35]  A. Underwood,et al.  Fractional Distillation of Multicomponent Mixtures , 1949 .

[36]  S. Glanz,et al.  Calculating minimum reflux of nonideal multicomponent distillation using eigenvalue theory , 1994 .

[37]  Emil Kirschbaum,et al.  Distillation and Rectification , 1948 .

[38]  Michael F. Doherty,et al.  On the dynamics of distillation processes—I: The simple distillation of multicomponent non-reacting, homogeneous liquid mixtures , 1978 .

[39]  E. Blass,et al.  Berechnung des minimalen Energiebedarfs nichtidealer Rektifikationen , 1993 .

[40]  H. Hausen,et al.  Rektifikation von Dreistoffgemischen insbesondere von Sauerstoff-Stickstoff-Argon-Gemischen , 1935 .

[41]  Zbigniew Fidkowski,et al.  Energy requirements of nonconventional distillation systems , 1990 .

[42]  K. Nandakumar,et al.  Minimum reflux conditions, part I: Theory , 1981 .

[43]  Shozo Tanaka,et al.  GRAPHICAL CALCULATION METHOD FOR MINIMUM REFLUX RATIO IN AZEOTROPIC DISTILLATION , 1972 .

[44]  Michael F. Doherty,et al.  Design and synthesis of homogeneous azeotropic distillations. 4. Minimum reflux calculations for multiple-feed columns , 1986 .

[45]  C. Gibson,et al.  Calculation of Minimum Reflux in Distillation Columns , 1950 .

[46]  Arthur W. Westerberg,et al.  Homogeneous azeotropic distillation: Analysis of separation feasibility and consequences for entrainer selection and column design , 1994 .

[47]  Michael F. Doherty,et al.  Geometric behavior and minimum flows for nonideal multicomponent distillation , 1990 .

[48]  Michael F. Doherty,et al.  Design and synthesis of homogeneous azeotropic distillations. 2. Minimum reflux calculations for nonideal and azeotropic columns , 1985 .

[49]  M. F. Malone,et al.  Feasibility of separations for distillation of nonideal ternary mixtures , 1993 .

[50]  Thomas Kuen,et al.  Minimum energy demand for distillations with distributed components and side-product withdrawals , 1994 .

[51]  Sebastian Zeck Einfluß von thermophysikalischen Stoffdaten auf die Auslegung und den Betrieb von Destillationskolonnen , 1990 .

[52]  Michael F. Malone,et al.  Minimum reflux, product distribution, and lumping rules for multicomponent distillation , 1984 .

[53]  Michael F. Malone,et al.  Approximate design of multiple-feed/side-stream distillation systems , 1987 .

[54]  Michael F. Doherty,et al.  Minimum entrainer flows for extractive distillation: A bifurcation theoretic approach , 1994 .

[55]  John Cawley,et al.  The determination of , 1993 .

[56]  Henry H. Y. Chien A rigorous method for calculating minimum reflux rates in distillation , 1978 .

[57]  B. Lu,et al.  On the determination of minimum reflux ratio for a multicomponent distillation column with any number of side-cut streams , 1970 .

[58]  Johann Stichlmair,et al.  Minimum reflux and minimum reboil in ternary distillation , 1993 .

[59]  F. Petlyuk Thermodynamically Optimal Method for Separating Multicomponent Mixtures , 1965 .

[60]  C. D. Holland,et al.  Fundamentals of Multicomponent Distillation , 1997 .

[61]  Endre Rev,et al.  The constant heat transport model and design of distillation columns with one single distributing component , 1990 .

[62]  Michael F. Doherty,et al.  A simple exact method for calculating tangent pinch points in multicomponent nonideal mixtures by bifurcation theory , 1986 .

[63]  J. STICHLMAIR,et al.  Separation of azeotropic mixtures via enhanced distillation , 1989 .

[64]  Michael F. Malone,et al.  New complex column arrangements for ideal distillation , 1986 .

[65]  Michael F. Malone,et al.  Approximate design and optimization of a thermally coupled distillation with prefractionation , 1988 .

[66]  Warren D. Seider,et al.  Foundations of computer-aided chemical process design , 1981 .

[67]  Neal R. Amundson,et al.  On the steady state fractionation of multicomponent and complex mixtures in an ideal cascade: Part IV. The calculation of the minimum reflux ratio , 1955 .

[68]  R. L. Geddes A general index of fractional distillation power for hydrocarbon mixtures , 1958 .