Real Algebraic Numbers: Complexity Analysis and Experimentation
暂无分享,去创建一个
Bernard Mourrain | Ioannis Z. Emiris | Elias P. Tsigaridas | I. Emiris | B. Mourrain | E. Tsigaridas
[1] Sylvain Pion,et al. Towards and open curved kernel , 2004, SCG '04.
[2] Tomás Recio,et al. Sturm-Habicht sequence , 1989, ISSAC '89.
[3] Kurt Mehlhorn,et al. New bounds for the Descartes method , 2005, SIGS.
[4] John F. Canny. Improved Algorithms for Sign Determination and Existential Quantifier Elimination , 1993, Comput. J..
[5] Kurt Mehlhorn,et al. A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.
[6] Arnold Schönhage,et al. The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .
[7] Victor Y. Pan,et al. Univariate polynomials: nearly optimal algorithms for factorization and rootfinding , 2001, ISSAC '01.
[8] G. E. Collins,et al. Real Zeros of Polynomials , 1983 .
[9] R. Riesenfeld,et al. Bounds on a polynomial , 1981 .
[10] Michel Coste,et al. Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..
[11] Jeremy Johnson,et al. Algorithms for polynomial real root isolation , 1992 .
[12] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[13] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[14] Giuseppe Fiorentino,et al. Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.
[15] Marie-Françoise Roy,et al. Complexity of the Computation on Real Algebraic Numbers , 1990, J. Symb. Comput..
[16] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[17] Ioannis Z. Emiris,et al. Real Solving of Bivariate Polynomial Systems , 2005, CASC.
[18] Ioannis Z. Emiris,et al. Computations with one and two real algebraic numbers , 2005, ArXiv.
[19] Yossi Azar,et al. Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings , 2006, ESA.
[20] Bernard Mourrain,et al. SYNAPS: A library for symbolic-numeric computation , 2005 .
[21] Michael N. Vrahatis,et al. On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..
[22] Maurice Mignotte,et al. On the distance between the roots of a polynomial , 1995, Applicable Algebra in Engineering, Communication and Computing.
[23] John H. Reif,et al. The complexity of elementary algebra and geometry , 1984, STOC '84.
[24] Ren-Hong Wang,et al. On computational geometry , 2003 .
[25] 下山 武司. Cylindrical Algebraic Decomposition と実代数制約(数式処理における理論とその応用の研究) , 1995 .
[26] Stefano Leonardi,et al. Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.
[27] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[28] Victor Y. Pan,et al. Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..
[29] Dario Bini,et al. Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.
[30] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[31] Daniel Reischert. Asymptotically fast computation of subresultants , 1997, ISSAC.
[32] Kurt Mehlhorn,et al. Effective Computational Geometry for Curves and Surfaces , 2005 .
[33] C. Yap,et al. Amortized Bound for Root Isolation via Sturm Sequences , 2007 .
[34] Fabrice Rouillier,et al. Bernstein's basis and real root isolation , 2004 .
[35] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[36] Chee-Keng Yap,et al. Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.
[37] Alkiviadis G. Akritas,et al. An implementation of Vincent's theorem , 1980 .
[38] Ioannis Z. Emiris,et al. Comparing Real Algebraic Numbers of Small Degree , 2004, ESA.
[39] Leonidas J. Guibas,et al. A Computational Framework for Handling Motion , 2004, ALENEX/ANALC.
[40] Mohab Safey El Din,et al. New Structure Theorem for Subresultants , 2000, J. Symb. Comput..
[41] Bruno Buchberger. Computer algebra: symbolic and algebraic computation, 2nd Edition , 1983 .
[42] George E. Collins,et al. Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..
[43] Joachim von zur Gathen,et al. Subresultants revisited , 2003, Theor. Comput. Sci..
[44] Susanne Albers,et al. Algorithms – ESA 2004 , 2004, Lecture Notes in Computer Science.
[45] Keith O. Geddes,et al. Algorithms for computer algebra , 1992 .
[46] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[47] T. J. Rivlin. Bounds on a polynomial , 1970 .
[48] Maurice Mignotte,et al. Mathematics for computer algebra , 1991 .
[49] Alkiviadis G. Akritas,et al. Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.
[50] M'hammed El Kahoui,et al. An elementary approach to subresultants theory , 2003, J. Symb. Comput..
[51] Ioannis Z. Emiris,et al. The predicates for the Voronoi diagram of ellipses , 2006, SCG '06.
[52] Bernard Mourrain,et al. On the computation of an arrangement of quadrics in 3D , 2005, Comput. Geom..
[53] B. F. Caviness,et al. Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.
[54] Fabrice Rouillier,et al. The implicit structure of ridges of a smooth parametric surface , 2006, Comput. Aided Geom. Des..
[55] Chee-Keng Yap,et al. A core library for robust numeric and geometric computation , 1999, SCG '99.
[56] Joachim von zur Gathen,et al. Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.
[57] Renaud Rioboo,et al. Towards faster real algebraic numbers , 2002, ISSAC '02.
[58] Ioannis Z. Emiris,et al. Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.
[59] Thomas Lickteig,et al. Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..