Real Algebraic Numbers: Complexity Analysis and Experimentation

We present algorithmic, complexity and implementation results concerning real root isolation of a polynomial of degree d, with integer coefficients of bit size ≤ ?, using Sturm (-Habicht) sequences and the Bernstein subdivision solver. In particular, we unify and simplify the analysis of both methods and we give an asymptotic complexity bound of $\mathcal{\tilde O}_B(d^4 \tau^2)$. This matches the best known bounds for binary subdivision solvers. Moreover, we generalize this to cover the non square-free polynomials and show that within the same complexity we can also compute the multiplicities of the roots. We also consider algorithms for sign evaluation, comparison of real algebraic numbers and simultaneous inequalities, and we improve the known bounds at least by a factor of d. Finally, we present our C++ implementation in synaps and some preliminary experiments on various data sets.

[1]  Sylvain Pion,et al.  Towards and open curved kernel , 2004, SCG '04.

[2]  Tomás Recio,et al.  Sturm-Habicht sequence , 1989, ISSAC '89.

[3]  Kurt Mehlhorn,et al.  New bounds for the Descartes method , 2005, SIGS.

[4]  John F. Canny Improved Algorithms for Sign Determination and Existential Quantifier Elimination , 1993, Comput. J..

[5]  Kurt Mehlhorn,et al.  A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.

[6]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[7]  Victor Y. Pan,et al.  Univariate polynomials: nearly optimal algorithms for factorization and rootfinding , 2001, ISSAC '01.

[8]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .

[9]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[10]  Michel Coste,et al.  Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..

[11]  Jeremy Johnson,et al.  Algorithms for polynomial real root isolation , 1992 .

[12]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[13]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[14]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[15]  Marie-Françoise Roy,et al.  Complexity of the Computation on Real Algebraic Numbers , 1990, J. Symb. Comput..

[16]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[17]  Ioannis Z. Emiris,et al.  Real Solving of Bivariate Polynomial Systems , 2005, CASC.

[18]  Ioannis Z. Emiris,et al.  Computations with one and two real algebraic numbers , 2005, ArXiv.

[19]  Yossi Azar,et al.  Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings , 2006, ESA.

[20]  Bernard Mourrain,et al.  SYNAPS: A library for symbolic-numeric computation , 2005 .

[21]  Michael N. Vrahatis,et al.  On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..

[22]  Maurice Mignotte,et al.  On the distance between the roots of a polynomial , 1995, Applicable Algebra in Engineering, Communication and Computing.

[23]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[24]  Ren-Hong Wang,et al.  On computational geometry , 2003 .

[25]  下山 武司 Cylindrical Algebraic Decomposition と実代数制約(数式処理における理論とその応用の研究) , 1995 .

[26]  Stefano Leonardi,et al.  Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.

[27]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[28]  Victor Y. Pan,et al.  Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..

[29]  Dario Bini,et al.  Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.

[30]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[31]  Daniel Reischert Asymptotically fast computation of subresultants , 1997, ISSAC.

[32]  Kurt Mehlhorn,et al.  Effective Computational Geometry for Curves and Surfaces , 2005 .

[33]  C. Yap,et al.  Amortized Bound for Root Isolation via Sturm Sequences , 2007 .

[34]  Fabrice Rouillier,et al.  Bernstein's basis and real root isolation , 2004 .

[35]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[36]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[37]  Alkiviadis G. Akritas,et al.  An implementation of Vincent's theorem , 1980 .

[38]  Ioannis Z. Emiris,et al.  Comparing Real Algebraic Numbers of Small Degree , 2004, ESA.

[39]  Leonidas J. Guibas,et al.  A Computational Framework for Handling Motion , 2004, ALENEX/ANALC.

[40]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[41]  Bruno Buchberger Computer algebra: symbolic and algebraic computation, 2nd Edition , 1983 .

[42]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[43]  Joachim von zur Gathen,et al.  Subresultants revisited , 2003, Theor. Comput. Sci..

[44]  Susanne Albers,et al.  Algorithms – ESA 2004 , 2004, Lecture Notes in Computer Science.

[45]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[46]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[47]  T. J. Rivlin Bounds on a polynomial , 1970 .

[48]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[49]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[50]  M'hammed El Kahoui,et al.  An elementary approach to subresultants theory , 2003, J. Symb. Comput..

[51]  Ioannis Z. Emiris,et al.  The predicates for the Voronoi diagram of ellipses , 2006, SCG '06.

[52]  Bernard Mourrain,et al.  On the computation of an arrangement of quadrics in 3D , 2005, Comput. Geom..

[53]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[54]  Fabrice Rouillier,et al.  The implicit structure of ridges of a smooth parametric surface , 2006, Comput. Aided Geom. Des..

[55]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[56]  Joachim von zur Gathen,et al.  Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.

[57]  Renaud Rioboo,et al.  Towards faster real algebraic numbers , 2002, ISSAC '02.

[58]  Ioannis Z. Emiris,et al.  Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.

[59]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..