Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality

Jarzynski’s equality is applied to free energy calculations from steered molecular dynamics simulations of biomolecules. The helix-coil transition of deca-alanine in vacuum is used as an example. With about ten trajectories sampled, the second order cumulant expansion, among the various averaging schemes examined, yields the most accurate estimates. We compare umbrella sampling and the present method, and find that their efficiencies are comparable.

[1]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[2]  J. Marcinkiewicz Sur une propriété de la loi de Gauß , 1939 .

[3]  P. Moran,et al.  Mathematics of Statistics , 1948, Nature.

[4]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[5]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[6]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[7]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[8]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[9]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[10]  Jan Hermans,et al.  Simple analysis of noise and hysteresis in (slow-growth) free energy simulations , 1991 .

[11]  Robert H. Wood,et al.  Systematic errors in free energy perturbation calculations due to a finite sample of configuration space: sample-size hysteresis , 1991 .

[12]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[13]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[14]  K. Schulten,et al.  Molecular dynamics study of unbinding of the avidin-biotin complex. , 1997, Biophysical journal.

[15]  C. Jarzynski Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.

[16]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[17]  K Schulten,et al.  Reconstructing potential energy functions from simulated force-induced unbinding processes. , 1997, Biophysical journal.

[18]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[19]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[20]  K Schulten,et al.  Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Schulten,et al.  Reconstructing Potentials of Mean Force through Time Series Analysis of Steered Molecular Dynamics Simulations , 1999 .

[22]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[23]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[24]  G. Hummer,et al.  Free energy reconstruction from nonequilibrium single-molecule pulling experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Hummer Fast-growth thermodynamic integration: Error and efficiency analysis , 2001 .

[26]  C. Jarzynski,et al.  A “fast growth” method of computing free energy differences , 2001 .

[27]  O. Becker,et al.  Solvent effects on the energy landscapes and folding kinetics of polyalanine , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[29]  K. Schulten,et al.  Steered molecular dynamics investigations of protein function. , 2001, Journal of molecular graphics & modelling.

[30]  K. Schulten,et al.  Steered molecular dynamics studies of titin I1 domain unfolding. , 2002, Biophysical journal.

[31]  Thomas B Woolf,et al.  Theory of a systematic computational error in free energy differences. , 2002, Physical review letters.

[32]  I. Tinoco,et al.  Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.

[33]  K. Schulten,et al.  Energetics of glycerol conduction through aquaglyceroporin GlpF , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Klaus Schulten,et al.  Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. , 2002, Journal of molecular biology.

[35]  Daniel M. Zuckerman,et al.  Overcoming finite-sampling errors in fast-switching free-energy estimates: extrapolative analysis of a molecular system , 2002 .

[36]  Rommie E. Amaro,et al.  Developing an energy landscape for the novel function of a (β/α)8 barrel: Ammonia conduction through HisF , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Schulten,et al.  Forced detachment of the CD2-CD58 complex. , 2003, Biophysical journal.

[38]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .