Burning and graphitization of optically levitated nanodiamonds in vacuum

A nitrogen-vacancy (NV−) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV− centres at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature (Ti) and find that it would be detrimental to the NV− centre’s spin coherence time. These values of Ti make it clear that the diamond is not melting, contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size.

[1]  W. Duley Refractive indices for amorphous carbon , 1984 .

[2]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[3]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Yury Gogotsi,et al.  Nanodiamond-polymer composite fibers and coatings. , 2009, ACS nano.

[5]  S. Russo,et al.  Size dependent phase stability of carbon nanoparticles: nanodiamond versus fullerenes , 2003 .

[6]  C. Pantea,et al.  Graphitization of diamond powders of different sizes at high pressure–high temperature , 2004 .

[7]  Zhang-qi Yin,et al.  Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling , 2013, 1305.1701.

[8]  Roberto Car,et al.  Carbon phase diagram from ab initio molecular dynamics. , 2005, Physical review letters.

[9]  Martin B. Plenio,et al.  Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers , 2014, 1403.6038.

[10]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[11]  N. Xu,et al.  Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient , 2002 .

[12]  D. D. Awschalom,et al.  Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K , 2012, 1201.4420.

[13]  Eva von Haartman,et al.  Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond , 2015, Nature Photonics.

[14]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[15]  Gilbert W. Collins,et al.  Melting temperature of diamond at ultrahigh pressure , 2010 .

[16]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[17]  Yury Gogotsi,et al.  Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. , 2006, Journal of the American Chemical Society.

[18]  J. Tuček Carbon Nanostructures , 2015 .

[19]  C. Bohren,et al.  Particles Small Compared with the Wavelength , 2007 .

[20]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[21]  Gavin W. Morley,et al.  Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. , 2013, Physical review letters.

[22]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[23]  N. Xu,et al.  Graphitization of nanodiamond powder annealed in argon ambient , 1999 .

[24]  T. T. Charalampopoulos,et al.  Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25° to 600°C☆ , 1993 .

[25]  R. Khmelnitsky,et al.  Transformation of diamond to graphite under heat treatment at low pressure , 2014 .

[26]  T. Yoshitake,et al.  Optical properties of ultrananocrystalline diamond/amorphous carbon composite films prepared by pulsed laser deposition , 2008 .

[27]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[28]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[29]  Taras Plakhotnik,et al.  The effects of surface oxidation on luminescence of nano diamonds , 2010 .

[30]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[31]  N. Maron Optical properties of fine amorphous carbon grains in the infrared region , 1990 .

[32]  S. Asher,et al.  uv Studies of Tetrahedral Bonding in Diamondlike Amorphous Carbon , 1997 .

[33]  Emanuele Pace,et al.  Diamond detectors for space applications , 2003 .

[34]  M. G. Ivanov,et al.  Synergistic Compositions of Colloidal Nanodiamond as Lubricant-additive , 2010 .

[35]  G. Davies,et al.  Graphitization of diamond at zero pressure and at a high pressure , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.