From human genome to cancer genome: The first decade

The realization that cancer progression required the participation of cellular genes provided one of several key rationales, in 1986, for embarking on the human genome project. Only with a reference genome sequence could the full spectrum of somatic changes leading to cancer be understood. Since its completion in 2003, the human reference genome sequence has fulfilled its promise as a foundational tool to illuminate the pathogenesis of cancer. Herein, we review the key historical milestones in cancer genomics since the completion of the genome, and some of the novel discoveries that are shaping our current understanding of cancer.

[1]  K. Anderson,et al.  Genetic variegation of clonal architecture and propagating cells in leukaemia , 2011, Nature.

[2]  F. M.,et al.  The Proper Study of Mankind , 1933, Nature.

[3]  J. Lupski,et al.  The complete genome of an individual by massively parallel DNA sequencing , 2008, Nature.

[4]  Steven J. M. Jones,et al.  BMC Genomics BioMed Central Methodology article , 2006 .

[5]  Daniel W. A. Buchan,et al.  A large-scale evaluation of computational protein function prediction , 2013, Nature Methods.

[6]  Li Ding,et al.  The Pediatric Cancer Genome Project , 2012, Nature Genetics.

[7]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[8]  C. Sander,et al.  The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma , 2011, Nature Genetics.

[9]  Ira M. Hall,et al.  Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration , 2012, Nature Genetics.

[10]  David I. Smith,et al.  Tumor Transcriptome Sequencing Reveals Allelic Expression Imbalances Associated with Copy Number Alterations , 2010, PloS one.

[11]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[12]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[13]  Huanming Yang,et al.  Single-Cell Exome Sequencing and Monoclonal Evolution of a JAK2-Negative Myeloproliferative Neoplasm , 2012, Cell.

[14]  G. Weinstock,et al.  Direct selection of human genomic loci by microarray hybridization , 2007, Nature Methods.

[15]  Sean Davis,et al.  Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. , 2013, Cancer research.

[16]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[17]  Lee T. Sam,et al.  Transcriptome Sequencing to Detect Gene Fusions in Cancer , 2009, Nature.

[18]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .

[19]  W. Cavenee,et al.  Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. , 2012, Current cancer drug targets.

[20]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[21]  J. Troge,et al.  Inferring tumor progression from genomic heterogeneity. , 2010, Genome research.

[22]  Doron Lipson,et al.  Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies , 2012, Nature Medicine.

[23]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[24]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[25]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[26]  J. Maguire,et al.  Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing , 2009, Nature Biotechnology.

[27]  Huanming Yang,et al.  Single-Cell Exome Sequencing Reveals Single-Nucleotide Mutation Characteristics of a Kidney Tumor , 2012, Cell.

[28]  Charles Swanton,et al.  Genetic prognostic and predictive markers in colorectal cancer , 2011, Nature Reviews Cancer.

[29]  Hui Yang,et al.  IDH1 and IDH2 Mutations in Tumorigenesis: Mechanistic Insights and Clinical Perspectives , 2012, Clinical Cancer Research.

[30]  Andrew Menzies,et al.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.

[31]  E. Lander,et al.  Lessons from the Cancer Genome , 2013, Cell.

[32]  A. Ashworth,et al.  Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas , 2010, The Journal of pathology.

[33]  A. Sivachenko,et al.  SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. , 2011, The New England journal of medicine.

[34]  J. Licht,et al.  DNMT3A mutations in acute myeloid leukemia , 2011, Nature Genetics.

[35]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[36]  N. Socci,et al.  Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. , 2012, The New England journal of medicine.

[37]  Charles Swanton,et al.  Intratumor Heterogeneity: Seeing the Wood for the Trees , 2012, Science Translational Medicine.

[38]  P. A. Futreal,et al.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma , 2010, Nature.

[39]  S. Scherer,et al.  Clonal Selection Drives Genetic Divergence of Metastatic Medulloblastoma , 2012, Nature.

[40]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[41]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[42]  M. Nowak,et al.  Distant Metastasis Occurs Late during the Genetic Evolution of Pancreatic Cancer , 2010, Nature.

[43]  L. Chin,et al.  Making sense of cancer genomic data. , 2011, Genes & development.

[44]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[45]  Ryan D. Morin,et al.  Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution , 2009, Nature.

[46]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[47]  Ken Chen,et al.  Clonal architecture of secondary acute myeloid leukemia. , 2012, The New England journal of medicine.

[48]  N. Grishin,et al.  BAP1 loss defines a new class of renal cell carcinoma , 2012, Nature Genetics.

[49]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[50]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[51]  H. Varmus,et al.  KRAS Mutations and Primary Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib , 2005, PLoS medicine.

[52]  R. Jensen,et al.  Differentially expressed alternatively spliced genes in Malignant Pleural Mesothelioma identified using massively parallel transcriptome sequencing , 2009, BMC Medical Genetics.

[53]  J. Maguire,et al.  Integrative analysis of the melanoma transcriptome. , 2010, Genome research.

[54]  R Dulbecco,et al.  A turning point in cancer research: sequencing the human genome. , 1986, Science.

[55]  A. Jankowska,et al.  Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. , 2012, Blood.

[56]  Li Ding,et al.  RECURRENT MUTATIONS IN THE U2AF1 SPLICING FACTOR IN MYELODYSPLASTIC SYNDROMES , 2011, Nature Genetics.

[57]  Amy E. Hawkins,et al.  DNA sequencing of a cytogenetically normal acute myeloid leukemia genome , 2008, Nature.

[58]  Markus J. van Roosmalen,et al.  Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. , 2011, Human molecular genetics.

[59]  S. Sugano,et al.  Frequent pathway mutations of splicing machinery in myelodysplasia , 2011, Nature.

[60]  S. Digumarthy,et al.  Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors , 2011, Science Translational Medicine.

[61]  M. Gerlinger,et al.  How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine , 2010, British Journal of Cancer.

[62]  Wendy Winckler,et al.  Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2 , 2012, Proceedings of the National Academy of Sciences.

[63]  N. Munshi,et al.  Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. , 2011, Blood.

[64]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[65]  Ryan M. Layer,et al.  Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms , 2013, Genome research.

[66]  L. Chin,et al.  Non-germline genetically engineered mouse models for translational cancer research , 2010, Nature Reviews Cancer.

[67]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[68]  Yasushi Totoki,et al.  Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. , 2012, Genome research.

[69]  Jonathan R. Pollack,et al.  The Spectrum of SWI/SNF Mutations, Ubiquitous in Human Cancers , 2013, PloS one.

[70]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[71]  Angela N. Brooks,et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.