Computation of parameter stability margins using polynomial programming techniques

In this paper, we consider linear time invariant (LTI) systems with parameter uncertainty. For such systems, we present global optimization techniques to determine permissible perturbations of the parameters of the system that maintain stability (the so-called parameter stability margins), for cases in which the coefficients of the characteristic equation of the system are polynomial functions of the uncertain parameters. The parameter uncertainty domains for maintaining stability are characterized as hypersolids, defined with respect to lp -norms for various values of p ∈ (1, ∞). Algorithms are devised based on the reformulation–linearization/convexification technique (RLT) in concert with branch-and-bound methods to solve the underlying parametric non-convex subproblems for computing the stability margins. Several illustrative examples are solved to demonstrate the efficacy of the proposed approach towards producing global optimal solutions. We also present comparative computational experience with the commercial global optimizer BARON.

[1]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[2]  E. Davison,et al.  PARAMETER STABILITY MARGINS FOR POLYNOMIAL UNCERTAINTY STRUCTURES: A POLYNOMIAL PROGRAMMING APPROACH , 2005 .

[3]  Hanif D. Sherali,et al.  New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems , 1997, Oper. Res. Lett..

[4]  Nusret Tan,et al.  Computation of the frequency response of multilinear affine systems , 2002, IEEE Trans. Autom. Control..

[5]  S. Bhattacharyya,et al.  Robust stability manifolds for multilinear interval systems , 1993, IEEE Trans. Autom. Control..

[6]  Alfredo C. Desages,et al.  Distance of a complex coefficient stable polynomial from the boundary of the stability set , 1991, Multidimens. Syst. Signal Process..

[7]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[8]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[9]  Tamás Vinkó,et al.  A comparison of complete global optimization solvers , 2005, Math. Program..

[10]  E. J. Davison,et al.  A simple procedure for the exact stability robustness computation of polynomials with affine coefficient perturbations , 1989, IEEE 1989 International Conference on Systems Engineering.

[11]  D. Hinrichsen,et al.  AN APPLICATION OF STATE SPACE METHODS TO OBTAIN EXPLICIT FORMULAE FOR ROBUSTNESS MEASURES OF POLYNOMIALS , 1989 .

[12]  Hanif D. Sherali,et al.  Global optimization of nonconvex factorable programming problems , 2001, Math. Program..

[13]  Alberto Tesi,et al.  Robustness analysis for linear dynamical systems with linearly correlated parametric uncertainties , 1990 .

[14]  Jürgen Ackermann,et al.  Robust gamma-stability analysis in a plant parameter space , 1991, Autom..

[15]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[16]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[17]  M. Safonov,et al.  Exact calculation of the multiloop stability margin , 1988 .

[18]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[19]  Jacob Kogan,et al.  Necessary and sufficient conditions for robust stability of linear systems with multiaffine uncertainty structure , 1995, IEEE Trans. Autom. Control..

[20]  Athanasios Sideris,et al.  Fast Computation of the Multivariable Stability Margin for Real Interrelated Uncertain Parameters , 1988, 1988 American Control Conference.

[21]  Mohammad Bozorg,et al.  lp parameter perturbation and design of robust controllers for linear systems , 1999 .

[22]  Fabrizio Dabbene,et al.  Recursive algorithms for inner ellipsoidal approximation of convex polytopes , 2003, Autom..

[23]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[24]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[25]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[26]  Parametric Stability Margin for Multilinear Interval Control Systems , 1993, 1993 American Control Conference.

[27]  Marc Teboulle,et al.  Applications of optimization methods to robust stability of linear systems , 1994 .