Bounding the Classical Capacity of Multilevel Damping Quantum Channels

A recent method to certify the classical capacity of quantum communication channels is applied for general damping channels in finite dimension. The method compares the mutual information obtained by coding on the computational and a Fourier basis, which can be obtained by just two local measurement settings and classical optimization. The results for large representative classes of different damping structures are presented.

[1]  P. Mataloni,et al.  Experimental detection of quantum channels. , 2013, Physical review letters.

[2]  Jun Ye,et al.  Observation of dipolar spin-exchange interactions with lattice-confined polar molecules , 2013, Nature.

[3]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[4]  Dariusz Chruściński,et al.  Detecting Non-Markovianity of Quantum Evolution via Spectra of Dynamical Maps. , 2016, Physical review letters.

[5]  Markus Grassl,et al.  Quantum Error-Correcting Codes for Qudit Amplitude Damping , 2015, IEEE Transactions on Information Theory.

[6]  C. Macchiavello,et al.  Quantum channel detection , 2013 .

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  R. Gallager Information Theory and Reliable Communication , 1968 .

[9]  Chiara Macchiavello,et al.  Efficient Accessible Bounds to the Classical Capacity of Quantum Channels. , 2019, Physical review letters.

[10]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[11]  D. Bruß,et al.  Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.

[12]  C. King,et al.  Capacity of quantum channels using product measurements , 2001 .

[13]  R. Puri,et al.  Mathematical Methods of Quantum Optics , 2001 .

[14]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[15]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[16]  P. Mataloni,et al.  Experimental Detection of Quantum Channel Capacities. , 2016, Physical review letters.

[17]  G. D’Ariano,et al.  Bell measurements and observables , 2000, quant-ph/0005121.

[18]  D. Petz Monotonicity of quantum relative entropy revisited , 2002, quant-ph/0209053.

[19]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[20]  Arjun K. Gupta,et al.  Handbook of beta distribution and its applications , 2004 .

[21]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[22]  C. Macchiavello,et al.  Mixed-state certification of quantum capacities for noisy communication channels , 2017, 1712.06867.

[23]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[24]  Optimized quantum-optical communications in the presence of loss , 1997, quant-ph/9711067.

[25]  Debbie W. Leung,et al.  Bosonic quantum codes for amplitude damping , 1997 .

[26]  Guang-Can Guo,et al.  High-dimensional entanglement between distant atomic-ensemble memories , 2014, Light: Science & Applications.

[27]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[28]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[29]  Stefano Pironio,et al.  Closing the detection loophole in Bell experiments using qudits. , 2009, Physical review letters.

[30]  Alexander Semenovich Holevo,et al.  Quantum coding theorems , 1998 .

[31]  Fabio Sciarrino,et al.  Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory , 2015, Nature Communications.

[32]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[33]  G. E. Owen,et al.  Fundamentals of Electronics , 1967 .

[34]  A. Holevo Coding Theorems for Quantum Channels , 1999 .

[35]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[36]  C. Fuchs Nonorthogonal Quantum States Maximize Classical Information Capacity , 1997, quant-ph/9703043.

[37]  Renato Renner,et al.  Efficient Approximation of Quantum Channel Capacities , 2014, IEEE Transactions on Information Theory.

[38]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[39]  Masahito Hayashi,et al.  Qubit channels which require four inputs to achieve capacity: implications for additivity conjectures , 2005, Quantum Inf. Comput..

[40]  G. Vallone,et al.  Experimental quantum process tomography of non-trace-preserving maps , 2010, 1008.5334.

[41]  Detecting Lower Bounds to Quantum Channel Capacities. , 2015, Physical review letters.

[42]  John Lygeros,et al.  Efficient Approximation of Channel Capacities , 2015, IEEE Transactions on Information Theory.

[43]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .