Elastomer based tunable optofluidic devices.

The synergetic integration of photonics and microfluidics has enabled a wide range of optofluidic devices that can be tuned based on various physical mechanisms. One such tuning mechanism can be realized based on the elasticity of polydimethylsiloxane (PDMS). The mechanical tuning of these optofluidic devices was achieved by modifying the geometry of the device upon applying internal or external forces. External or internal forces can deform the elastomeric components that in turn can alter the optical properties of the device or directly induce flow. In this review, we discuss recent progress in tunable optofluidic devices, where tunability is enabled by the elasticity of the construction material. Different subtypes of such tuning methods will be summarized, namely tuning based on bulk or membrane deformations, and pneumatic actuation.

[1]  Demetri Psaltis,et al.  Optofluidics for energy applications , 2011, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[2]  Wuzhou Song,et al.  Optofluidic differential spectroscopy for absorbance detection of sub-nanolitre liquid samples. , 2012, Lab on a chip.

[3]  M. Teitell,et al.  Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[4]  D. Tsai,et al.  Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation , 2012, Nature Communications.

[5]  Demetri Psaltis,et al.  Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip. , 2011, Biomicrofluidics.

[6]  Antony Orth,et al.  Multiplexed pressure sensing with elastomer membranes. , 2011, Lab on a chip.

[7]  A. Hawkins,et al.  The photonic integration of non-solid media using optofluidics , 2011 .

[8]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[9]  Peng Fei,et al.  Discretely tunable optofluidic compound microlenses. , 2011, Lab on a chip.

[10]  Integrated optical attenuator based on mechanical deformation of an elastomer layer , 2011 .

[11]  High-grade optical polydimethylsiloxane for microfluidic applications , 2011, Biomedical microdevices.

[12]  Hua Zhang,et al.  Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. , 2011, Chemical communications.

[13]  Demetri Psaltis,et al.  Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit. , 2011, Lab on a chip.

[14]  S. Herminghaus,et al.  Nematic Liquid Crystals and Nematic Colloids in Microfluidic Environment , 2011 .

[15]  Christos Markos,et al.  Thermo-optic effect of an index guiding photonic crystal fiber with elastomer inclusions , 2011, International Conference on Optical Fibre Sensors.

[16]  Wonsuk Lee,et al.  Tunable single mode lasing from an on-chip optofluidic ring resonator laser , 2011, CLEO 2011.

[17]  Demetri Psaltis,et al.  Optofluidic modulator based on peristaltic nematogen microflows , 2011 .

[18]  Demetri Psaltis,et al.  Optofluidic pressure sensor based on interferometric imaging. , 2010, Optics letters.

[19]  Mitsunori Saito,et al.  Deformable Microdroplet Cavity Fabricated by an Inkjet Method , 2010 .

[20]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[21]  Tony Jun Huang,et al.  Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing. , 2010, Lab on a chip.

[22]  D. Psaltis,et al.  Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography. , 2010, Optics express.

[23]  J. Baumberg,et al.  Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. , 2010, Nano letters.

[24]  Demetri Psaltis,et al.  Pneumatically tunable optofluidic dye laser , 2010 .

[25]  Fabrication and characterization of optofluidic flexible meniscus―biconvex lens system , 2009 .

[26]  M. E. Sánchez-Morales,et al.  Pressure measurements through image analysis. , 2009, Optics express.

[27]  Fook Siong Chau,et al.  Liquid tunable diffractive/refractive hybrid lens. , 2009, Optics letters.

[28]  Lihong V. Wang Multiscale photoacoustic microscopy and computed tomography. , 2009, Nature photonics.

[29]  S. Quake,et al.  Highly parallel measurements of interaction kinetic constants with a microfabricated optomechanical device. , 2009, Applied physics letters.

[30]  Wook Park,et al.  Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. , 2009, Lab on a chip.

[31]  W. Pernice,et al.  Broadband all-photonic transduction of nanocantilevers. , 2009, Nature nanotechnology.

[32]  Demetri Psaltis,et al.  Optofluidic evanescent dye laser based on a distributed feedback circular grating , 2009 .

[33]  Hongbin Yu,et al.  A liquid-filled tunable double-focus microlens. , 2009, Optics express.

[34]  P. Dubois,et al.  Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers , 2009 .

[35]  Demetri Psaltis,et al.  Low-order distributed feedback optofluidic dye laser with reduced threshold , 2009 .

[36]  Yongjin Wang,et al.  Tunable photonic crystals on a freestanding polymer membrane , 2009 .

[37]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[38]  A. Werber,et al.  Tunable Pneumatic Microoptics , 2008, Journal of Microelectromechanical Systems.

[39]  L.Y. Lin,et al.  Variable Wave Plate via Tunable Form-Birefringent Structures , 2008, Journal of Microelectromechanical Systems.

[40]  Jason P Beech,et al.  Tuneable separation in elastomeric microfluidics devices. , 2008, Lab on a chip.

[41]  Jessica Melin,et al.  Microfluidic large-scale integration: the evolution of design rules for biological automation. , 2007, Annual review of biophysics and biomolecular structure.

[42]  G. Town,et al.  Fluidic fibre dye lasers. , 2007, Optics express.

[43]  Elastomeric properties of polysiloxane networks: birefringence measurements on bimodal elastomers that are presumed to be spatially inhomogeneous , 2007 .

[44]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[45]  S. Quake,et al.  A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors , 2007, Science.

[46]  Erdan Gu,et al.  Conference on Lasers and Electro-OP , 2007 .

[47]  M. Burns,et al.  Tuneable elastomeric nanochannels for nanofluidic manipulation. , 2007, Nature materials.

[48]  Ming C. Wu,et al.  Optical MEMS for Lightwave Communication , 2006, Journal of Lightwave Technology.

[49]  Pressure-driven devices with lithographically fabricated composite epoxy-elastomer membranes , 2006 .

[50]  Demetri Psaltis,et al.  Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip. , 2006, Lab on a chip.

[51]  Zhaoyu Zhang,et al.  Mechanically tunable optofluidic distributed feedback dye laser , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[52]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[53]  Anders Kristensen,et al.  Optofluidic third order distributed feedback dye laser , 2006, physics/0605047.

[54]  Luke P. Lee,et al.  Optofluidic control using photothermal nanoparticles , 2006, Nature materials.

[55]  Aigars Piruska,et al.  The autofluorescence of plastic materials and chips measured under laser irradiation. , 2005, Lab on a chip.

[56]  George M. Whitesides,et al.  Integrated fluorescent light source for optofluidic applications , 2005 .

[57]  Mangilal Agarwal,et al.  Polymer-based variable focal length microlens system , 2004 .

[58]  John A. Rogers,et al.  Polymer Imprint Lithography with Molecular-Scale Resolution , 2004 .

[59]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[60]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[61]  Daniel T Chiu,et al.  A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[63]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[64]  M. Bélanger,et al.  Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. , 2001, Journal of biomedical materials research.

[65]  J. Yeomans,et al.  Simulations of liquid crystals in Poiseuille flow , 2000, cond-mat/0012317.

[66]  G. Whitesides,et al.  Elastomeric optical elements with deformable surface topographies : applications to force measurements, tunable light transmission and light focusing , 2000 .

[67]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[68]  S. Quake,et al.  A microfabricated fluorescence-activated cell sorter , 1999, Nature Biotechnology.

[69]  O Manzardo,et al.  Miniaturized time-scanning Fourier Transform Spectrometer based on silicon technology , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[70]  Proposal of human eye's crystalline lens-like variable focusing lens , 1998, 1998 IEEE/LEOS Summer Topical Meeting. Digest. Broadband Optical Networks and Technologies: An Emerging Reality. Optical MEMS. Smart Pixels. Organic Optics and Optoelectronics (Cat. No.98TH8369).

[71]  Liquid mirror telescopes : history , 1991 .