Induction of synapse formation by de novo neurotransmitter synthesis

[1]  T. Südhof The cell biology of synapse formation , 2021, The Journal of cell biology.

[2]  Mehmet Gültas,et al.  Ultrastructural maturation of the endbulb of Held active zones comparing wild-type and otoferlin-deficient mice , 2021, iScience.

[3]  Y. Kozorovitskiy,et al.  Ketamine Rapidly Enhances Glutamate-Evoked Dendritic Spinogenesis in Medial Prefrontal Cortex Through Dopaminergic Mechanisms , 2021, Biological Psychiatry.

[4]  T. Schneider,et al.  Synapse and Active Zone Assembly in the Absence of Presynaptic Ca2+ Channels and Ca2+ Entry , 2020, Neuron.

[5]  T. Südhof,et al.  Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. , 2019, Cell stem cell.

[6]  W. Lu,et al.  Genetic Deletion of GABAA Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development , 2019, Front. Cell. Neurosci..

[7]  Pamela F. Marcott,et al.  Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties , 2019, Neuron.

[8]  N. Spitzer,et al.  Exercise enhances motor skill learning by neurotransmitter switching in the adult midbrain , 2019, bioRxiv.

[9]  T. Südhof,et al.  Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins , 2019, Science.

[10]  T. Südhof,et al.  Towards an Understanding of Synapse Formation , 2018, Neuron.

[11]  T. Freund,et al.  Co-transmission of acetylcholine and GABA regulates hippocampal states , 2018, Nature Communications.

[12]  David J. Barker,et al.  Selective Brain Distribution and Distinctive Synaptic Architecture of Dual Glutamatergic-GABAergic Neurons. , 2018, Cell reports.

[13]  T. Südhof,et al.  Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly , 2017, The Journal of cell biology.

[14]  T. Südhof,et al.  Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits , 2017, Cell.

[15]  Sheng Ding,et al.  Scalable Production of iPSC-Derived Human Neurons to Identify Tau-Lowering Compounds by High-Content Screening , 2017, Stem cell reports.

[16]  Gary S Bhumbra,et al.  Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic , 2017, bioRxiv.

[17]  Segregation of glutamatergic and cholinergic transmission at the mixed motoneuron Renshaw cell synapse , 2017, Scientific Reports.

[18]  Howard Y. Chang,et al.  Generation of pure GABAergic neurons by transcription factor programming , 2017, Nature Methods.

[19]  Bo Zhang,et al.  Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins , 2017, Neuron.

[20]  Mark Ellisman,et al.  Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission , 2017, Neuron.

[21]  Nils Brose,et al.  Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release , 2017, Neuron.

[22]  Hyung-Bae Kwon,et al.  De novo synaptogenesis induced by GABA in the developing mouse cortex , 2016, Science.

[23]  E. Mandelkow,et al.  Tau in physiology and pathology , 2015, Nature Reviews Neuroscience.

[24]  Jun B. Ding,et al.  Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease , 2015, Nature Neuroscience.

[25]  T. Südhof,et al.  Conditional knockout of Nlgn2 in the adult medial prefrontal cortex (mPFC) induces delayed loss of inhibitory synapses , 2015, Molecular Psychiatry.

[26]  D. H. Root,et al.  Single rodent mesohabenular axons release glutamate and GABA , 2014, Nature Neuroscience.

[27]  T. Südhof,et al.  Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation , 2013, Proceedings of the National Academy of Sciences.

[28]  Yan Liu,et al.  Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells , 2013, Nature Protocols.

[29]  A. Thomson,et al.  GABAA receptors can initiate the formation of functional inhibitory GABAergic synapses , 2013, The European journal of neuroscience.

[30]  T. Südhof,et al.  Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells , 2013, Neuron.

[31]  S. Anderson,et al.  Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. , 2013, Cell stem cell.

[32]  J. Rubenstein,et al.  Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. , 2013, Cell stem cell.

[33]  Mark Ellisman,et al.  The Cell-Autonomous Role of Excitatory Synaptic Transmission in the Regulation of Neuronal Structure and Function , 2013, Neuron.

[34]  Stefan Leutgeb,et al.  Neurotransmitter Switching in the Adult Brain Regulates Behavior , 2013, Science.

[35]  N. Brose Why we need more synaptogenic cell-adhesion proteins , 2013, Proceedings of the National Academy of Sciences.

[36]  R. Edwards,et al.  Restoration of Hearing in the VGLUT3 Knockout Mouse Using Virally Mediated Gene Therapy , 2012, Neuron.

[37]  T. Südhof,et al.  Synaptic cell adhesion. , 2012, Cold Spring Harbor perspectives in biology.

[38]  B. Sabatini,et al.  Glutamate induces de novo growth of functional spines in developing cortex , 2011, Nature.

[39]  M. A. Xu-Friedman,et al.  Calcium imaging of auditory nerve fiber terminals in the cochlear nucleus , 2011, Journal of Neuroscience Methods.

[40]  M. A. Xu-Friedman,et al.  Neuromodulation by GABA converts a relay into a coincidence detector. , 2010, Journal of neurophysiology.

[41]  T. Südhof,et al.  Neurexins Physically and Functionally Interact with GABAA Receptors , 2010, Neuron.

[42]  M. A. Xu-Friedman,et al.  A low-affinity antagonist reveals saturation and desensitization in mature synapses in the auditory brain stem. , 2010, Journal of neurophysiology.

[43]  T. Südhof,et al.  Neuroligin‐1 performs neurexin‐dependent and neurexin‐independent functions in synapse validation , 2009, The EMBO journal.

[44]  M. Hoon,et al.  Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin , 2009, Neuron.

[45]  Thomas C. Südhof,et al.  Neuroligins Determine Synapse Maturation and Function , 2006, Neuron.

[46]  D. Ryugo,et al.  Postnatal development of a large auditory nerve terminal: The endbulb of Held in cats , 2006, Hearing Research.

[47]  P. Scheiffele,et al.  Control of Excitatory and Inhibitory Synapse Formation by Neuroligins , 2005, Science.

[48]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[49]  R. Fields,et al.  New insights into neuron-glia communication. , 2002, Science.

[50]  Bernd Fritzsch,et al.  Auditory system development: primary auditory neurons and their targets. , 2002, Annual review of neuroscience.

[51]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[52]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[53]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[54]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[55]  J. Kirsch,et al.  Glycine-receptor activation is required for receptor clustering in spinal neurons , 1998, Nature.

[56]  T. Hattori,et al.  Single dopaminergic nigrostriatal neurons form two chemically distinct synaptic types: Possible transmitter segregation within neurons , 1991, The Journal of comparative neurology.

[57]  D. Ryugo,et al.  Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held , 1982, The Journal of comparative neurology.

[58]  D. K. Morest,et al.  Relations between auditory nerve endings and cell types in the cat's anteroventral cochlear nucleus seen with the Golgi method and nomarski optics , 1975, The Journal of comparative neurology.