Melnikov Method for a Three-Zonal Planar Hybrid Piecewise-Smooth System and Application

In this paper, we extend the well-known Melnikov method for smooth systems to a class of planar hybrid piecewise-smooth systems, defined in three domains separated by two switching manifolds x = a and x = b. The dynamics in each domain is governed by a smooth system. When an orbit reaches the separation lines, then a reset map describing an impacting rule applies instantaneously before the orbit enters into another domain. We assume that the unperturbed system has a continuum of periodic orbits transversally crossing the separation lines. Then, we wish to study the persistence of the periodic orbits under an autonomous perturbation and the reset map. To achieve this objective, we first choose four appropriate switching sections and build a Poincare map, after that, we present a displacement function and carry on the Taylor expansion of the displacement function to the first-order in the perturbation parameter e near e = 0. We denote the first coefficient in the expansion as the first-order Melnikov function whose zeros provide us the persistence of periodic orbits under perturbation. Finally, we study periodic orbits of a concrete planar hybrid piecewise-smooth system by the obtained Melnikov function.

[1]  Peter Kukučka,et al.  Melnikov method for discontinuous planar systems , 2007 .

[2]  Wei Zhang,et al.  Melnikov-Type Method for a Class of Discontinuous Planar Systems and Applications , 2014, Int. J. Bifurc. Chaos.

[3]  Maoan Han,et al.  Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems , 2012 .

[4]  Jaume Llibre,et al.  Averaging methods for finding periodic orbits via Brouwer degree , 2004 .

[5]  J. Llibre,et al.  Limit cycles of some polynomial differential systems in dimension 2, 3 and 4, via averaging theory , 2008 .

[6]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[7]  Zhengdong Du,et al.  Melnikov method for homoclinic bifurcation in nonlinear impact oscillators , 2005 .

[8]  Emilio Freire,et al.  Melnikov theory for a class of planar hybrid systems , 2013 .

[9]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[10]  Michal Fečkan,et al.  Homoclinic Trajectories in Discontinuous Systems , 2008 .

[11]  Maoan Han,et al.  On Hopf bifurcation in non-smooth planar systems , 2010 .

[12]  Tere M. Seara,et al.  The Melnikov Method and Subharmonic Orbits in a Piecewise-Smooth System , 2012, SIAM J. Appl. Dyn. Syst..

[13]  Michal Fečkan,et al.  Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems , 2012 .

[14]  Mario di Bernardo,et al.  Sliding bifurcations: a Novel Mechanism for the Sudden Onset of Chaos in dry Friction oscillators , 2003, Int. J. Bifurc. Chaos.

[15]  Jaume Llibre,et al.  Asymptotic Stability of Periodic Solutions for Nonsmooth Differential Equations with Application to the Nonsmooth van der Pol Oscillator , 2007, SIAM J. Math. Anal..

[16]  F. Vasca,et al.  Bifurcations in piecewise-smooth feedback systems , 2002 .

[17]  Jaume Llibre,et al.  Averaging analysis of a perturbated quadratic center , 2001 .

[18]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[19]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[20]  Michal Fečkan,et al.  Bifurcation and chaos near sliding homoclinics , 2010 .