Pexophagy in yeast and mammals: an update on mysteries

[1]  R. Klausen,et al.  Selective , 2020, Encyclopedia of the UN Sustainable Development Goals.

[2]  M. J. Clague,et al.  Dual role of USP30 in controlling basal pexophagy and mitophagy , 2018, EMBO reports.

[3]  Se-Jin Kim,et al.  Catalase inhibition induces pexophagy through ROS accumulation. , 2018, Biochemical and biophysical research communications.

[4]  R. Park,et al.  PEX5 regulates autophagy via the mTORC1-TFEB axis during starvation , 2018, Experimental & Molecular Medicine.

[5]  S. Tooze,et al.  Autophagy pathway: Cellular and molecular mechanisms , 2018, Autophagy.

[6]  S. Subramani,et al.  Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase , 2018, Autophagy.

[7]  S. Tooze,et al.  A molecular perspective of mammalian autophagosome biogenesis , 2018, The Journal of Biological Chemistry.

[8]  M. Schrader,et al.  The peroxisome: an update on mysteries 2.0 , 2012, Histochemistry and Cell Biology.

[9]  Michael Rovatsos Events , 1952, Journal of Failure Analysis and Prevention.

[10]  L. C. Pomatto,et al.  Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. , 2018, Physiological reviews.

[11]  R. Youle,et al.  Mitochondrial fission facilitates the selective mitophagy of protein aggregates , 2017, The Journal of cell biology.

[12]  Wei Wang,et al.  Role of PEX5 ubiquitination in maintaining peroxisome dynamics and homeostasis , 2017, Cell cycle.

[13]  Junjie Chen,et al.  Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. , 2017, Cell reports.

[14]  A. Ballabio,et al.  Molecular definitions of autophagy and related processes , 2017, The EMBO journal.

[15]  M. Fransen,et al.  The Peroxisome-Mitochondria Connection: How and Why? , 2017, International journal of molecular sciences.

[16]  Cynthia M. Cipolla,et al.  Peroxisomal Dysfunction in Age-Related Diseases , 2017, Trends in Endocrinology & Metabolism.

[17]  A. Moser,et al.  The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders , 2017, Autophagy.

[18]  H. McBride,et al.  Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes , 2017, Nature.

[19]  Peter Findeisen,et al.  ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER , 2017, The Journal of cell biology.

[20]  B. Raught,et al.  VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis , 2017, The Journal of cell biology.

[21]  F. Alkuraya,et al.  Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids* , 2016, The Journal of Biological Chemistry.

[22]  A. Vanderver,et al.  ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism , 2016, Journal of Medical Genetics.

[23]  P. Kim,et al.  PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation , 2016, The Journal of cell biology.

[24]  S. Subramani,et al.  Mechanistic insights into selective autophagy pathways: lessons from yeast , 2016, Nature Reviews Molecular Cell Biology.

[25]  A. Ballabio,et al.  TFEB at a glance , 2016, Journal of Cell Science.

[26]  J. Mancias,et al.  Mechanisms of Selective Autophagy in Normal Physiology and Cancer. , 2016, Journal of molecular biology.

[27]  Y. Sakai,et al.  Pexophagy in yeasts. , 2016, Biochimica et biophysica acta.

[28]  R. Erdmann,et al.  Role of AAA(+)-proteins in peroxisome biogenesis and function. , 2016, Biochimica et biophysica acta.

[29]  C. Behl,et al.  Ubiquitin-Dependent And Independent Signals In Selective Autophagy. , 2016, Trends in cell biology.

[30]  T. Pandita,et al.  ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS , 2015, Nature Cell Biology.

[31]  W. Kovacs,et al.  Hypoxia signaling pathways: modulators of oxygen-related organelles , 2015, Front. Cell Dev. Biol..

[32]  F. Inagaki,et al.  Mechanisms of Autophagy. , 2015, Annual review of biophysics.

[33]  C. Brees,et al.  Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts , 2015, Autophagy.

[34]  I. Katona,et al.  Regulation of endoplasmic reticulum turnover by selective autophagy , 2015, Nature.

[35]  W. Krek,et al.  EPAS1/HIF-2α is a driver of mammalian pexophagy , 2015, Autophagy.

[36]  N. Braverman,et al.  Ether lipid deficiency does not cause neutropenia or leukopenia in mice and men. , 2015, Cell metabolism.

[37]  D. Link,et al.  Acute ether lipid deficiency affects neutrophil biology in mice. , 2015, Cell metabolism.

[38]  S. Subramani,et al.  Peroxisomal Pex3 Activates Selective Autophagy of Peroxisomes via Interaction with the Pexophagy Receptor Atg30* , 2015, The Journal of Biological Chemistry.

[39]  Christine Yu,et al.  USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria , 2015, Nature Cell Biology.

[40]  D. Link,et al.  Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. , 2015, Cell metabolism.

[41]  Y. Fujiki,et al.  Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3‐II , 2015, Genes to cells : devoted to molecular & cellular mechanisms.

[42]  A. Moser,et al.  Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. , 2014, Cell metabolism.

[43]  Y. Ohsumi,et al.  Hrr25 triggers selective autophagy–related pathways by phosphorylating receptor proteins , 2014, The Journal of cell biology.

[44]  Y. Fujiki,et al.  The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy , 2014, Autophagy.

[45]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[46]  P. Cossart,et al.  Diverse intracellular pathogens activate Type III Interferon expression from peroxisomes , 2014, Nature Immunology.

[47]  T. Y. Nazarko,et al.  Atg37 regulates the assembly of the pexophagic receptor protein complex , 2014, Autophagy.

[48]  Amanda M. Lauer,et al.  The Pex1-G844D mouse: a model for mild human Zellweger spectrum disorder. , 2014, Molecular genetics and metabolism.

[49]  D. Klionsky,et al.  Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins , 2014, Nature Structural &Molecular Biology.

[50]  A. Motley,et al.  Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae , 2014, Autophagy.

[51]  P. Faust,et al.  Cholesterol biosynthesis and ER stress in peroxisome deficiency. , 2014, Biochimie.

[52]  M. Fransen,et al.  Peroxisomal metabolism and oxidative stress. , 2014, Biochimie.

[53]  S. Subramani,et al.  Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy , 2014, The Journal of cell biology.

[54]  D. Klionsky,et al.  The progression of peroxisomal degradation through autophagy requires peroxisomal division , 2014, Autophagy.

[55]  M. Peter,et al.  Substrate recognition in selective autophagy and the ubiquitin-proteasome system. , 2014, Biochimica et biophysica acta.

[56]  Simon C Watkins,et al.  Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells , 2013, Nature Cell Biology.

[57]  I. J. van der Klei,et al.  Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. , 2013, Biochemical and biophysical research communications.

[58]  R. Folkerth,et al.  A TSC signaling node at the peroxisome regulates mTORC1 and autophagy in response to ROS , 2013, Nature Cell Biology.

[59]  T. Lamark,et al.  The LIR motif – crucial for selective autophagy , 2013, Journal of Cell Science.

[60]  D. Klionsky,et al.  The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. , 2013, Developmental cell.

[61]  I. J. van der Klei,et al.  Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events , 2013, Autophagy.

[62]  S. Subramani,et al.  Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11 , 2013, EMBO reports.

[63]  J. Lippincott-Schwartz,et al.  NBR1 acts as an autophagy receptor for peroxisomes , 2013, Journal of Cell Science.

[64]  H. Serve,et al.  Ubiquitination and selective autophagy , 2012, Cell Death and Differentiation.

[65]  L. Scorrano,et al.  Mitochondrial morphology in mitophagy and macroautophagy. , 2013, Biochimica et biophysica acta.

[66]  M. Fransen,et al.  Aging, age-related diseases and peroxisomes. , 2013, Sub-cellular biochemistry.

[67]  A. Motley,et al.  Atg36: the Saccharomyces cerevisiae receptor for pexophagy. , 2012, Autophagy.

[68]  M. Fransen,et al.  Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. , 2012, Biochimica et biophysica acta.

[69]  M. Schrader,et al.  Fission and proliferation of peroxisomes. , 2012, Biochimica et biophysica acta.

[70]  Harald W. Platta,et al.  The RING‐type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme‐selective manner , 2012, The FEBS journal.

[71]  A. Motley,et al.  Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae , 2012, The EMBO journal.

[72]  Markus Islinger,et al.  The peroxisome: an update on mysteries , 2012, Histochemistry and Cell Biology.

[73]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[74]  I. J. van der Klei,et al.  Damaged peroxisomes are subject to rapid autophagic degradation in the yeast Hansenula polymorpha , 2011, Autophagy.

[75]  I. Dikic,et al.  The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. , 2011, Trends in cell biology.

[76]  T. Lamark,et al.  Selective autophagy mediated by autophagic adapter proteins , 2011, Autophagy.

[77]  P. Veldhoven Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism , 2010 .

[78]  P. V. Van Veldhoven Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism[S] , 2010, Journal of Lipid Research.

[79]  H. McBride,et al.  Vps35 Mediates Vesicle Transport between the Mitochondria and Peroxisomes , 2010, Current Biology.

[80]  D. Hailey,et al.  Autophagy termination and lysosome reformation regulated by mTOR , 2010, Nature.

[81]  N. Hacohen,et al.  Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity , 2010, Cell.

[82]  D. Hailey,et al.  Autophagy termination and lysosome reformation regulated by mTOR , 2010, Nature.

[83]  G. Mills,et al.  ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS , 2010, Proceedings of the National Academy of Sciences.

[84]  Michelle M Wiest,et al.  The plasma lipidomic signature of nonalcoholic steatohepatitis , 2009, Hepatology.

[85]  G. Los,et al.  Peroxisome Dynamics in Cultured Mammalian Cells , 2009, Traffic.

[86]  Harald W. Platta,et al.  Pex2 and Pex12 Function as Protein-Ubiquitin Ligases in Peroxisomal Protein Import , 2009, Molecular and Cellular Biology.

[87]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[88]  S. Yokota,et al.  Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms , 2009, Histochemistry and Cell Biology.

[89]  A. Lajtha,et al.  Handbook of neurochemistry and molecular neurobiology : Neural lipids , 2009 .

[90]  Jennifer Lippincott-Schwartz,et al.  Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes , 2008, Proceedings of the National Academy of Sciences.

[91]  Y. Fujiki,et al.  The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. , 2008, Experimental cell research.

[92]  S. Subramani,et al.  PpAtg30 tags peroxisomes for turnover by selective autophagy. , 2008, Developmental cell.

[93]  M. Schrader,et al.  The peroxisome: still a mysterious organelle , 2008, Histochemistry and Cell Biology.

[94]  Miguel A. Andrade-Navarro,et al.  Cargo-Selected Transport from the Mitochondria to Peroxisomes Is Mediated by Vesicular Carriers , 2008, Current Biology.

[95]  I. J. van der Klei,et al.  Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy , 2008, Autophagy.

[96]  J. Kiel,et al.  AUTOPHAGY: LOWER EUKARYOTES AND NON-MAMMALIAN SYSTEMS, PT A , 2008 .

[97]  I. J. van der Klei,et al.  Pexophagy in Hansenula polymorpha. , 2008, Methods in enzymology.

[98]  Michelle M Wiest,et al.  A lipidomic analysis of nonalcoholic fatty liver disease , 2007, Hepatology.

[99]  H. Moser,et al.  Peroxisome biogenesis disorders. , 2006, Biochimica et biophysica acta.

[100]  Michael Schrader,et al.  Peroxisomes and oxidative stress. , 2006, Biochimica et biophysica acta.

[101]  Daniel J Klionsky,et al.  Autophagy in organelle homeostasis: peroxisome turnover. , 2006, Molecular aspects of medicine.

[102]  Keiji Tanaka,et al.  Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals* , 2006, Journal of Biological Chemistry.

[103]  J. Kiel,et al.  Ubiquitination of the Peroxisomal Targeting Signal Type 1 Receptor, Pex5p, Suggests the Presence of a Quality Control Mechanism during Peroxisomal Matrix Protein Import* , 2005, Journal of Biological Chemistry.

[104]  Y. Sakai,et al.  Intracellular ATP Correlates with Mode of Pexophagy in Pichia pastoris , 2005, Bioscience, biotechnology, and biochemistry.

[105]  I. J. van der Klei,et al.  Microautophagy and macropexophagy may occur simultaneously in Hansenula polymorpha , 2004, FEBS letters.

[106]  J. Kiel,et al.  Peroxisome homeostasis in Hansenula polymorpha. , 2003, FEMS yeast research.

[107]  I. J. van der Klei,et al.  Removal of Pex3p Is an Important Initial Stage in Selective Peroxisome Degradation in Hansenula polymorpha * , 2002, The Journal of Biological Chemistry.

[108]  W. B. Snyder,et al.  Peroxisome Remnants in pex3Δ Cells and the Requirement of Pex3p for Interactions Between the Peroxisomal Docking and Translocation Subcomplexes , 2002, Traffic.

[109]  I. J. van der Klei,et al.  Peroxisome Biogenesis and Selective Degradation Converge at Pex14p* , 2001, The Journal of Biological Chemistry.

[110]  I. J. van der Klei,et al.  Glucose-induced and nitrogen-starvation-induced peroxisome degradation are distinct processes in Hansenula polymorpha that involve both common and unique genes. , 2001, FEMS yeast research.

[111]  D. Klionsky,et al.  Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. , 1999, Journal of cell science.

[112]  R. Schekman,et al.  Selective Uptake of Cytosolic, Peroxisomal, and Plasma Membrane Proteins into the Yeast Lysosome for Degradation (*) , 1996, The Journal of Biological Chemistry.

[113]  I. J. van der Klei,et al.  Peroxisomal remnants in peroxisome‐deficient mutants of the yeast Hansenula polymorha , 1996 .

[114]  I. J. van der Klei,et al.  Peroxisomal remnants in peroxisome-deficient mutants of the yeast Hansenula polymorpha [corrected]. , 1996, FEBS Letters.

[115]  D. L. Tuttle,et al.  Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. , 1995, Journal of cell science.

[116]  C. de Duve,et al.  THE SYNTHESIS AND TURNOVER OF RAT LIVER PEROXISOMES , 1970, The Journal of cell biology.