The global socioeconomic energetic metabolism as a sustainability problem

This paper discusses sustainability problems related to socioeconomic energy flows based upon the societal metabolism approach. Contrary to conventional energy statistics that only include energy used in technical devices, this approach considers all kinds of energy flows related to human societies, including nutritional energy flows of humans and domesticated animals. Based upon human population data and data on the pro capite energy metabolism of hunter-gatherers and agricultural societies as well as on statistical data on industrial energy flows a time series of the global socioeconomic energetic metabolism for the last 106 years and a scenario for the next 50 years is derived. These estimates show that the total energy input of mankind has risen by several orders of magnitude since the Neolithic revolution about 10,000 years ago. Whereas the energy input of agricultural societies prior to the advent of industrial societies about 200–300 years ago did not exceed 5% of global terrestrial net primary productivity (NPP), humanity's energy input currently amounts to about 30% of global terrestrial NPP and is likely to surpass 50% in about 2050. This shows that the sheer magnitude of human-induced flows is historically unprecedented and poses at least two closely interrelated sustainability challenges: (1) a reduction of energy available to ecosystem processes that can be assessed using the concept of ‘human appropriation of net primary productivity’ and (2) the changes in the global carbon cycle resulting from land-use change and fossil-energy combustion.

[1]  By Joseph Lee,et al.  Balancing on an Alp: Ecological Change and Continuity in a Swiss Mountain Community. , 1983 .

[2]  D. Tyteca Sustainability Indicators at the Firm Level , 1998 .

[3]  Heinz Schandl,et al.  Social Metabolism and Labour in a Local Context: Changing Environmental Relations on Trinket Island , 2001 .

[4]  M. Fischer-Kowalski,et al.  The Intellectual History of Materials Flow Analysis, Part I, I 860- I 970 , 1998 .

[5]  P. Sa European energy to 2020: A scenario approach : European Commission: Directorate General for Energy (DGXVII), Office for Official Publications of the European Communities (Luxembourg), 1996 , 1997 .

[6]  Mario Giampietro,et al.  Socioeconomic constraints to farming with biodiversity , 1997 .

[7]  Y. Moriguchi,et al.  Resource flows : the material basis of industrial economies , 1997 .

[8]  D. Wright,et al.  Human impacts on energy flow through natural ecosystems, and implications for species endangerment. , 1990 .

[9]  武彦 福島 持続可能性(Sustainability)の要件 , 2006 .

[10]  V. Smil General Energetics: Energy in the Biosphere and Civilization , 1991 .

[11]  M. Fischer-Kowalski,et al.  Society's Metabolism , 1998 .

[12]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[13]  Fridolin Krausmann,et al.  Land use and industrial modernization: an empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995 , 2001 .

[14]  Helmut Haberl,et al.  Tons, joules, and money: Modes of production and their sustainability problems , 1997 .

[15]  M Grubb,et al.  Energy policies and the greenhouse effect. Vol.1, Policy appraisal , 1991 .

[16]  S. Boyden,et al.  Biohistory: The Interplay Between Human Society and the Biosphere, Past and Present , 1992 .

[17]  Helmut Haberl,et al.  The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830-1995 , 2002 .

[18]  Robert U. Ayres,et al.  Industrial Metabolism: Restructuring for Sustainable Development , 1994 .

[19]  Pamela A. Matson,et al.  HUMAN APPROPRIATION OF THE PRODUCTS OF PHOTOSYNTHESIS , 1986 .

[20]  Marina Fischer-Kowalski,et al.  Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur : ein Versuch in Sozialer Ökologie , 1997 .

[21]  Ernest Gellner,et al.  Plough, Sword, and Book: The Structure of Human History , 1990 .

[22]  Helmut Haberl,et al.  Land-use change and socio-economic metabolism in Austria—Part II: land-use scenarios for 2020 , 2003 .

[23]  H. Haberl,et al.  Global Environmental Change and Historical Transitions , 2001 .

[24]  Brian G. Wolff,et al.  Forecasting Agriculturally Driven Global Environmental Change , 2001, Science.

[25]  D. Stern,et al.  Aggregation and the role of energy in the economy , 2000 .

[26]  Bruce Podobnik,et al.  Toward a Sustainable Energy Regime , 1999 .

[27]  Rolf Peter Sieferle Rückblick auf die Natur. Eine Geschichte des Menschen und seiner Umwelt , 1997 .

[28]  Gene E. Likens,et al.  Humans as components of ecosystems : the ecology of subtle human effects and populated areas , 1993 .

[29]  R. Kasperson,et al.  Sustainability Science , 2019, Critical Skills for Environmental Professionals.

[30]  Helmut Haberl,et al.  The Energetic Metabolism of Societies: Part II: Empirical Examples , 2001 .

[31]  D. Pimentel,et al.  Food Production and the Energy Crisis , 1973, Science.

[32]  Helmut Haberl,et al.  Cascade utilization of biomass: strategies for a more efficient use of a scarce resource , 2000 .

[33]  M. Munasinghe,et al.  Defining and Measuring Sustainability: The Biogeophysical Foundations , 1995 .

[34]  E L Cook,et al.  The flow of energy in an industrial society. , 1971, Scientific American.

[35]  C. Hall,et al.  Energy and Resource Quality: The Ecology of the Economic Process , 1992 .

[36]  José Goldemberg,et al.  Energy for a sustainable world , 1987 .

[37]  H. Weisz,et al.  The Weight of Nations : Material Outflows from Industrial Economies , 2000 .

[38]  Enrico Sciubba,et al.  Extended exergy accounting applied to energy recovery from waste: The concept of total recycling , 2003 .

[39]  Helmut Haberl,et al.  Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer , 2004 .

[40]  Mario Giampietro,et al.  Socioeconomic pressure, demographic pressure, environmental loading and technological changes in agriculture , 1997 .

[41]  Gordon MacKerron Ecological economics: energy, environment and society , 1988 .

[42]  D. Pimentel,et al.  Technological changes in energy use in US agricultural production. , 1990 .

[43]  Helga Weisz,et al.  SOCIETY AS HYBRID BETWEEN MATERIAL AND SYMBOLIC REALMS : TOWARD A THEORETICAL FRAMEWORK OF SOCIETY-NATURE INTERACTION , 2006 .

[44]  S. Gliessman,et al.  Agroecology: researching the ecological basis for sustainable agriculture. , 1990 .

[45]  Karl W. Butzer,et al.  Archaeology as human ecology , 1982 .

[46]  Fatih Birol,et al.  World energy prospects to 2020 , 1999 .

[47]  S. Boyden,et al.  The Human Component of Ecosystems , 1993 .

[48]  Michael Grubb,et al.  Energy Policies and the Greenhouse Effect , 1990 .

[49]  Helmut Haberl,et al.  Socioeconomic Metabolism and Colonization of Natural Processes in SangSaeng Village: Material and Energy Flows, Land Use, and Cultural Change in Northeast Thailand , 2003 .

[50]  Helmut Haberl,et al.  Energetischer Stoffwechsel und nachhaltige Entwicklung , 2000 .

[51]  P. Nilsson Environmental Accounting—EMERGY and Environmental Decision Making , 1997 .

[52]  Elmar Schwarzlmüller,et al.  Human Appropriation of Net Primary Production , 2008 .

[53]  D. Pimentel,et al.  How many people can the earth support , 1997 .

[54]  R. Rappaport,et al.  The flow of energy in an agricultural society. , 1971, Scientific American.

[55]  Helmut Haberl,et al.  The Energetic Metabolism of Societies Part I: Accounting Concepts , 2001 .

[56]  R. Netting,et al.  Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture. , 1994 .