A dynamic data driven application system for wildfire spread simulation

Wildfire spread simulation plays important roles in wildfire management. Existing wildfire simulations are largely decoupled from real wildfires by making little usage of real time data. In this paper, a dynamic data driven application system is presented to incorporate the real time data into the simulation model, thus to improve the simulation results. The developed dynamic data driven application system is based on the DEVS-FIRE model and employs the particle filtering algorithm to estimate the state of fire spread. We describe the overall structure of the dynamic data driven application system for wildfire spread simulation. The major issues and computation models of this work are presented and experiment results are provided.

[1]  Xiaolin Hu,et al.  DEVS-FIRE: Towards an Integrated Simulation Environment for Surface Wildfire Spread and Containment , 2008, Simul..

[2]  Wei Zhao,et al.  A Note on Dynamic Data Driven Wildfire Modeling , 2004, International Conference on Computational Science.

[3]  Claudia S. Frydman,et al.  The Discrete Event Concept as a Paradigm for the “Perception-Based Diagnosis” of Sachem , 2004, J. Intell. Robotic Syst..

[4]  D.E. Rivera,et al.  Simulation of Semiconductor Manufacturing Supply-Chain Systems With DEVS, MPC, and KIB , 2009, IEEE Transactions on Semiconductor Manufacturing.

[5]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[6]  E. Pastor,et al.  Mathematical models and calculation systems for the study of wildland fire behaviour , 2003 .

[7]  Jun S. Liu Nonparametric hierarchical Bayes via sequential imputations , 1996 .

[8]  Haris N. Koutsopoulos,et al.  Nonlinear Kalman Filtering Algorithms for On-Line Calibration of Dynamic Traffic Assignment Models , 2006, IEEE Transactions on Intelligent Transportation Systems.

[9]  Nils Christophersen,et al.  Monte Carlo filters for non-linear state estimation , 2001, Autom..

[10]  Frederica Darema Introduction to the ICCS 2007 Workshop on Dynamic Data Driven Applications Systems , 2007, International Conference on Computational Science.

[11]  Tao Chen,et al.  Dynamic data rectification using particle filters , 2008, Comput. Chem. Eng..

[12]  Dan Crisan,et al.  Particle Filters - A Theoretical Perspective , 2001, Sequential Monte Carlo Methods in Practice.

[13]  Pierre Del Moral,et al.  Discrete Filtering Using Branching and Interacting Particle Systems , 1998 .

[14]  Niraj K. Jha,et al.  Data-driven techniques for hardware and software synthesis for embedded systems , 2004 .

[15]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[16]  Karsten Schwan,et al.  Dynamic Data Driven Application Simulation of Surface Transportation Systems , 2006, International Conference on Computational Science.

[17]  Mo M. Jamshidi,et al.  V-Lab-a virtual laboratory for autonomous agents-SLA-based learning controllers , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[19]  Justin M. Bradley,et al.  Particle Filter Based Mosaicking for Forest Fire Tracking , 2007 .

[20]  John P. Dwyer,et al.  Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models , 1997 .

[21]  Russell R. Barton,et al.  Proceedings of the 2000 winter simulation conference , 2000 .

[22]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[23]  Jon E. Keeley,et al.  Lessons from the October 2003. Wildfires in Southern California , 2004, Journal of Forestry.

[24]  Wei Li,et al.  Demonstrating the Validity of a Wildfire DDDAS , 2006, International Conference on Computational Science.

[25]  Jack P. C. Kleijnen,et al.  EUROPEAN JOURNAL OF OPERATIONAL , 1992 .

[26]  R. Weber,et al.  Modelling fire spread through fuel beds , 1991 .

[27]  Marco Borga,et al.  Accuracy of radar rainfall estimates for streamflow simulation , 2002 .

[28]  Leonidas J. Guibas,et al.  Towards a Dynamic Data Driven System for Structural and Material Health Monitoring , 2006, International Conference on Computational Science.

[29]  Judith Winterkamp,et al.  Studying wildfire behavior using FIRETEC , 2002 .

[30]  Jonathan D. Beezley,et al.  A wildland fire model with data assimilation , 2007, Math. Comput. Simul..

[31]  C. E. Van Wagner,et al.  Height of Crown Scorch in Forest Fires , 1973 .

[32]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[33]  Corrado Priami,et al.  Discrete event systems specification in systems biology - a discussion of stochastic pi calculus and DEVS , 2005, Proceedings of the Winter Simulation Conference, 2005..

[34]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[35]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[36]  Pierpaolo Duce,et al.  Evaluation of FARSITE simulator in Mediterranean maquis , 2007 .

[37]  Gabrielle Allen Building a Dynamic Data Driven Application System for Hurricane Forecasting , 2007, International Conference on Computational Science.

[38]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[39]  Guan Qin,et al.  A WILDLAND FIRE DYNAMIC DATA-DRIVEN APPLICATION SYSTEM , 2006 .

[40]  Cedric Nishan Canagarajah,et al.  Mobility Tracking in Cellular Networks Using Particle Filtering , 2007, IEEE Transactions on Wireless Communications.

[41]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[42]  Bing Cao,et al.  Data-driven simulation of the supply-chain--Insights from the aerospace sector , 2007 .

[43]  S.,et al.  TOWARDS A DYNAMIC DATA DRIVEN SYSTEM FOR RAPID ADAPTIVE INTERDISCIPLINARY OCEAN FORECASTING , 2004 .

[44]  Charles R. McLean,et al.  New manufacturing modeling methodology: data driven design and simulation system based on XML , 2003, WSC '03.

[45]  George Wolberg,et al.  Digital image warping , 1990 .

[46]  Gabriel A. Wainer,et al.  Modeling and simulation of hardware/software systems with CD++ , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[47]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[48]  Anthony Vodacek,et al.  Autonomous field-deployable wildland fire sensors , 2003 .

[49]  Minjeong Kim,et al.  Data assimilation for wildland fires , 2007, IEEE Control Systems.

[50]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[51]  C. McLean,et al.  Data driven design and simulation system based on XML , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[52]  Naifang Bei,et al.  Atmospheric Chemistry and Physics Using 3dvar Data Assimilation System to Improve Ozone Simulations in the Mexico City Basin , 2022 .

[53]  Yalchin Efendiev,et al.  DDDAS Approaches to Wildland Fire Modeling and Contaminant Tracking , 2006, Proceedings of the 2006 Winter Simulation Conference.

[54]  Yusheng Feng,et al.  Development of a Computational Paradigm for Laser Treatment of Cancer , 2006, International Conference on Computational Science.

[55]  Bernard P. Zeigler,et al.  Theory of modeling and simulation , 1976 .

[56]  John Wilkin,et al.  Four-Dimensional Variational Assimilation of Satellite Temperature and Sea Level Data in the Coastal Ocean and Adjacent Deep Sea , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[57]  Jie Liang,et al.  Origin of scaling behavior of protein packing density: A sequential Monte Carlo study of compact long chain polymers , 2003, cond-mat/0301085.

[58]  Steven W. Running,et al.  Ecosystem Disturbance, Carbon, and Climate , 2008, Science.

[59]  Jon E. Keeley,et al.  FUTURE OF CALIFORNIA FLORISTICS AND SYSTEMATICS: WILDFIRE THREATS TO THE CALIFORNIA FLORA , 1995 .

[60]  Xiaolin Hu,et al.  State estimation using particle filters in wildfire spread simulation , 2009, SpringSim '09.

[61]  Xiaolin Hu,et al.  Towards applications of particle filters in wildfire spread simulation , 2008, 2008 Winter Simulation Conference.

[62]  Anil Sawhney,et al.  Application of the DEVS Framework in Construction Simulation , 2006, Proceedings of the 2006 Winter Simulation Conference.

[63]  Robert C. Seli,et al.  BehavePlus fire modeling system, version 4.0: User's Guide , 2005 .

[64]  Nikos Paragios,et al.  Application of Particle Filtering to Image Enhancement , 2005 .

[65]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[66]  Bernard P. Zeigler,et al.  DEVS-C++: a high performance modelling and simulation environment , 1996, Proceedings of HICSS-29: 29th Hawaii International Conference on System Sciences.