Moment based transfer function design for volume rendering

Local data features play important roles in the transfer function design for volume rendering. By examining relationships among three eigenvalues of inertia matrix, a semi-automatic data-driven transfer function design method is presented in this paper. Local features detected by local block based moments, such as flat, round, elongated shapes are used to guide the design of transfer functions. Furthermore, the proposed method can objectively fulfill the function of the previous boundary based method and extend the domain of transfer function to include more data features. Practice experiments are conducted to render real medical data sets by using the proposed transfer function method.

[1]  Prasad Bingi,et al.  Critical issues affecting an ERP implementation : Entreprise computing , 1999 .

[2]  Carl-Fredrik Westin,et al.  Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering , 2000, IEEE Trans. Vis. Comput. Graph..

[3]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[4]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[5]  Carlos D. Correa A Flexible Architecture to Support Awareness in Heterogeneous Collaborative Environments , 2002 .

[6]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[7]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[8]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[9]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[10]  Shiaofen Fang,et al.  Image-based transfer function design for data exploration in volume visualization , 1998 .

[11]  Ivan Marsic,et al.  Latecomer and Crash Recovery Support in Fault-Tolerant Groupware , 2001, IEEE Distributed Syst. Online.

[12]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[13]  Rafael Wiemker,et al.  Fast detection of meaningful isosurfaces for volume data visualization , 2001, Proceedings Visualization, 2001. VIS '01..

[14]  Prasad Bingi,et al.  Critical Issues Affecting an ERP Implementation , 1999, Inf. Syst. Manag..

[15]  Raghu Machiraju,et al.  Salient iso-surface detection with model-independent statistical signatures , 2001, Proceedings Visualization, 2001. VIS '01..

[16]  Hanspeter Pfister,et al.  Generation of transfer functions with stochastic search techniques , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[17]  Eduard Gröller,et al.  Mastering Transfer Function Specification by using VolumePro Technology , 2000 .

[18]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[19]  Yuriko Takeshima,et al.  Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[20]  Ivan Marsic,et al.  The DISCIPLE system for collaboration over the heterogeneous Web , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[21]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.