Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models.

The local generation of all components of the renin-angiotensin system (RAS) in the heart has been the basis for the postulation of a tissue RAS in this organ. Since angiotensin II is involved in the induction of cardiac hypertrophy and fibrosis the local generation of this peptide may be of highest clinical importance. Several transgenic animal models have been generated to evaluate the functional importance of the cardiac RAS. We have established a new hypertensive mouse model lacking local angiotensinogen expression in the heart. In these animals, cardiac weight and collagen synthesis are increased compared to normotensive control mice but to a lesser extent than in mice with equally enhanced blood pressure but intact cardiac angiotensinogen generation. Thus, we have shown that local synthesis of this protein is involved but not essential in the development of cardiac hypertrophy and fibrosis.

[1]  D. Ganten,et al.  Reduced hypertension-induced end-organ damage in mice lacking cardiac and renal angiotensinogen synthesis , 2002, Journal of Molecular Medicine.

[2]  D. Silversides,et al.  Use of a Biological Peptide Pump to Study Chronic Peptide Hormone Action in Transgenic Mice , 2001, The Journal of Biological Chemistry.

[3]  Y. Pinto,et al.  Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy , 2001, Journal of Molecular Medicine.

[4]  T. Ichiki,et al.  Angiotensin II Type 2 Receptor Is Essential for Left Ventricular Hypertrophy and Cardiac Fibrosis in Chronic Angiotensin II–Induced Hypertension , 2001, Circulation.

[5]  H. Matsubara,et al.  Apoptosis Is Not Increased in Myocardium Overexpressing Type 2 Angiotensin II Receptor in Transgenic Mice , 2001, Hypertension.

[6]  D. Ganten,et al.  Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research , 2001, Journal of Molecular Medicine.

[7]  D. Silversides,et al.  Contribution of circulating renin to local synthesis of angiotensin peptides in the heart. , 2000, Physiological genomics.

[8]  Y. Mori,et al.  Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase. , 2000, The Journal of biological chemistry.

[9]  F. Gaffney,et al.  Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. , 2000, The Journal of clinical investigation.

[10]  S. Eguchi,et al.  Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase , 2000, Regulatory Peptides.

[11]  D. Dostal The cardiac renin–angiotensin system: novel signaling mechanisms related to cardiac growth and function , 2000, Regulatory Peptides.

[12]  C. Ruwhof,et al.  Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. , 2000, Cardiovascular research.

[13]  N. Dali-Youcef,et al.  Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Ganten,et al.  The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. , 2000, Hypertension.

[15]  K. Baker,et al.  The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? , 1999, Circulation research.

[16]  J. Sadoshima,et al.  Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes In vitro. , 1999, Circulation research.

[17]  T. Inagami,et al.  Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. , 1999, The Journal of clinical investigation.

[18]  D. Ganten,et al.  Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Y. Toya,et al.  Activation of angiotensinogen gene in cardiac myocytes by angiotensin II and mechanical stretch. , 1998, American journal of physiology. Regulatory, integrative and comparative physiology.

[20]  L. Mazzolai,et al.  Blood pressure-independent cardiac hypertrophy induced by locally activated renin-angiotensin system. , 1998, Hypertension.

[21]  A. Danser,et al.  Localization and production of angiotensin II in the isolated perfused rat heart. , 1998, Hypertension.

[22]  H. Matsubara,et al.  Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type 1a knockout mice. , 1998, Circulation research.

[23]  Q. Li,et al.  Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. , 1998, The Journal of clinical investigation.

[24]  M. Zile,et al.  Pressure-overload hypertrophy is unabated in mice devoid of AT1A receptors. , 1998, American journal of physiology. Heart and circulatory physiology.

[25]  Y. Mori,et al.  Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. , 1998, The Journal of clinical investigation.

[26]  J. Ménard,et al.  Local angiotensin II generation in the rat heart: role of renin uptake. , 1998, Circulation research.

[27]  Y. Mori,et al.  Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. , 1997, Circulation.

[28]  A. Danser,et al.  Mannose 6-phosphate receptor-mediated internalization and activation of prorenin by cardiac cells. , 1997, Hypertension.

[29]  H. Schunkert Polymorphism of the angiotensin-converting enzyme gene and cardiovascular disease , 1997, Journal of Molecular Medicine.

[30]  G. Barsh,et al.  Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Fukamizu,et al.  Stretch-induced MAP kinase activation in cardiomyocytes of angiotensinogen-deficient mice. , 1997, Biochemical and biophysical research communications.

[32]  K. Weber,et al.  Cultured myofibroblasts generate angiotensin peptides de novo. , 1997, Journal of molecular and cellular cardiology.

[33]  T. Katsuya,et al.  AT1 and AT2 angiotensin receptor gene expression in human heart failure. , 1997, Circulation.

[34]  M. Boddi,et al.  Evidence for the existence of a functional cardiac renin-angiotensin system in humans. , 1996, Circulation.

[35]  G. Booz,et al.  Role of type 1 and type 2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. , 1996, Hypertension.

[36]  Y. Mori,et al.  Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. , 1996, Circulation research.

[37]  J. Laragh,et al.  Specific prorenin/renin binding (ProBP). Identification and characterization of a novel membrane site. , 1996, American journal of hypertension.

[38]  A. Clerk,et al.  Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. , 1996, The Biochemical journal.

[39]  R Aikawa,et al.  Endothelin-1 Is Involved in Mechanical Stress-induced Cardiomyocyte Hypertrophy (*) , 1996, The Journal of Biological Chemistry.

[40]  E. Sonnenblick,et al.  Identification and activation of autocrine renin-angiotensin system in adult ventricular myocytes. , 1995, The American journal of physiology.

[41]  A. McCulloch,et al.  Angiotensin II stimulates the autocrine production of transforming growth factor-β1 in adult rat cardiac fibroblasts , 1995 .

[42]  G. Booz,et al.  Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. , 1995, Cardiovascular research.

[43]  N. Kim,et al.  Trophic effects of angiotensin II on neonatal rat cardiac myocytes are mediated by cardiac fibroblasts. , 1995, The American journal of physiology.

[44]  T. Suzuki,et al.  Endothelin-1 and its binding sites are upregulated in pressure overload cardiac hypertrophy. , 1995, The American journal of physiology.

[45]  E. Fleck,et al.  Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. , 1995, Circulation.

[46]  A. Fukamizu,et al.  Angiotensinogen-deficient mice with hypotension. , 1994, The Journal of biological chemistry.

[47]  H. Schunkert,et al.  Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. , 1994, The American journal of physiology.

[48]  A. Danser,et al.  Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis. , 1994, Hypertension.

[49]  P. Erne,et al.  Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. , 1994, The Journal of clinical investigation.

[50]  F. Marumo,et al.  Endothelin ETA receptor antagonist blocks cardiac hypertrophy provoked by hemodynamic overload. , 1994, Circulation.

[51]  H. Matsubara,et al.  Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. , 1994, The Journal of clinical investigation.

[52]  J. Sadoshima,et al.  Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro , 1993, Cell.

[53]  D. Campbell,et al.  Nephrectomy, converting enzyme inhibition, and angiotensin peptides. , 1993, Hypertension.

[54]  M. Schambelan,et al.  Characterization of angiotensin II receptor subtypes in rat heart. , 1992, Circulation research.

[55]  Philippe Amouyel,et al.  Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction , 1992, Nature.

[56]  K. Rothblum,et al.  Intracardiac detection of angiotensinogen and renin: a localized renin-angiotensin system in neonatal rat heart. , 1992, The American journal of physiology.

[57]  K. Swedberg,et al.  Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II) , 1992, The New England journal of medicine.

[58]  E. J. Brown,et al.  Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. , 1992, The New England journal of medicine.

[59]  A. Danser,et al.  Production of angiotensins I and II at tissue sites in intact pigs. , 1992, The American journal of physiology.

[60]  J. Higaki,et al.  Role of Cardiac Angiotensin II in Isoproterenol‐Induced Left Ventricular Hypertrophy , 1992, Hypertension.

[61]  K. Fuxe,et al.  High blood pressure in transgenic mice carrying the rat angiotensinogen gene. , 1992, The EMBO journal.

[62]  N. Niedermaier,et al.  110. Left ventricular hypertrophy and myocardial infarction increase left ventricular angiotensinogen gene expression , 1991 .

[63]  M. Pahor,et al.  Enalapril Prevents Cardiac Fibrosis and Arrhythmias in Hypertensive Rats , 1991, Hypertension.

[64]  T. Ogihara,et al.  Converting enzyme inhibitors regressed cardiac hypertrophy and reduced tissue angiotensin II in spontaneously hypertensive rats. , 1991, Journal of hypertension.

[65]  J. S. Janicki,et al.  Cardioreparative Effects of Lisinopril in Rats With Genetic Hypertension and Left Ventricular Hypertrophy , 1991, Circulation.

[66]  G. Gamble,et al.  Early prevention of left ventricular dysfunction after myocardial infarction with angiotensin-converting-enzyme inhibition , 1991, The Lancet.

[67]  K Lindpaintner,et al.  The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. , 1991, Circulation research.

[68]  K. Misono,et al.  Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. , 1990, The Journal of biological chemistry.

[69]  K. Baker,et al.  Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. , 1990, The American journal of physiology.

[70]  B. Healy,et al.  Angiotensin II receptors in normal and failing human hearts. , 1989, The Journal of clinical endocrinology and metabolism.

[71]  K. Arakawa,et al.  Direct formation of angiotensin II without renin or converting enzyme in the ischemic dog heart. , 1989, Japanese heart journal.

[72]  D. Ganten,et al.  Angiotensinogen gene expression in extrahepatic rat tissues: Application of a solution hybridization assay , 1988, Naunyn-Schmiedeberg's Archives of Pharmacology.

[73]  G. Lamas,et al.  Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. , 1988, The New England journal of medicine.

[74]  N. Sharpe,et al.  TREATMENT OF PATIENTS WITH SYMPTOMLESS LEFT VENTRICULAR DYSFUNCTION AFTER MYOCARDIAL INFARCTION , 1988, The Lancet.

[75]  T. Brody,et al.  A comparative study of the distributions of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. , 1987, Endocrinology.

[76]  V. Dzau Implications of local angiotensin production in cardiovascular physiology and pharmacology. , 1987, The American journal of cardiology.

[77]  J. Habener,et al.  Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. , 1986, The Journal of clinical investigation.

[78]  T. Rogers,et al.  Identification and characterization of functional angiotensin II receptors on cultured heart myocytes. , 1986, The Journal of pharmacology and experimental therapeutics.

[79]  B. Wintroub,et al.  The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G. , 1982, The Journal of biological chemistry.

[80]  R. Tarazi,et al.  Effect of Converting Enzyme Inhibitor (SQ14,225) on Myocardial Hypertrophy in Spontaneously Hypertensive Rats , 1980, Hypertension.

[81]  D. Ganten,et al.  Reduction of cardiac hypertrophy in TGR(mREN2)27 by angiotensin II receptor blockade , 2004, Molecular and Cellular Biochemistry.

[82]  Y. Yazaki,et al.  Molecular basis of cardiac hypertrophy , 2000, Zeitschrift für Kardiologie.

[83]  R. A. Rutherford,et al.  Differential distribution of angiotensin AT2 receptors in the normal and failing human heart. , 1998, The Journal of pharmacology and experimental therapeutics.

[84]  K. Weber,et al.  Angiotensin converting enzyme and kininase-II-like activities in cultured valvular interstitial cells of the rat heart. , 1995, Cardiovascular research.