Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway.

[1]  H. Bahl,et al.  Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. , 2011, Current opinion in biotechnology.

[2]  P. Dürre,et al.  Genome-Wide Gene Expression Analysis of the Switch between Acidogenesis and Solventogenesis in Continuous Cultures of Clostridium acetobutylicum , 2011, Journal of Molecular Microbiology and Biotechnology.

[3]  Christian J Sund,et al.  Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. , 2010, Microbiology.

[4]  L. Domingues,et al.  Technological trends, global market, and challenges of bio-ethanol production. , 2010, Biotechnology advances.

[5]  Shiyuan Hu,et al.  Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. , 2010, Metabolic engineering.

[6]  E. Papoutsakis,et al.  A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. , 2010, Metabolic engineering.

[7]  C. Weber,et al.  Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels , 2010, Applied Microbiology and Biotechnology.

[8]  W. H. Zyl,et al.  Engineering cellulolytic ability into bioprocessing organisms , 2010, Applied Microbiology and Biotechnology.

[9]  E. Nevoigt,et al.  Genetic improvement of brewer’s yeast: current state, perspectives and limits , 2010, Applied Microbiology and Biotechnology.

[10]  Yanping Zhang,et al.  Engineering Clostridium Strain to Accept Unmethylated DNA , 2010, PloS one.

[11]  Nathan D. Price,et al.  Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms , 2010, Applied Microbiology and Biotechnology.

[12]  B. Solomon Biofuels and sustainability , 2010, Annals of the New York Academy of Sciences.

[13]  M. Moo-young,et al.  Metabolic pathways of clostridia for producing butanol. , 2009, Biotechnology advances.

[14]  I. Karimi,et al.  Strain improvement and process development for biobutanol production. , 2009, Recent patents on biotechnology.

[15]  N. Qureshi,et al.  How microbes tolerate ethanol and butanol. , 2009, New biotechnology.

[16]  G. Stephanopoulos,et al.  Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? , 2009, Nature Reviews Microbiology.

[17]  Weihong Jiang,et al.  Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. , 2009, Metabolic engineering.

[18]  E. Papoutsakis,et al.  Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. , 2008, Metabolic engineering.

[19]  G. Stephanopoulos,et al.  Selection and optimization of microbial hosts for biofuels production. , 2008, Metabolic engineering.

[20]  E. Papoutsakis Engineering solventogenic clostridia. , 2008, Current opinion in biotechnology.

[21]  L. Nielsen,et al.  Fermentative butanol production by clostridia , 2008, Biotechnology and bioengineering.

[22]  E. Papoutsakis,et al.  The transcriptional program underlying the physiology of clostridial sporulation , 2008, Genome Biology.

[23]  P. Dürre Fermentative Butanol Production , 2008, Annals of the New York Academy of Sciences.

[24]  P. Dürre Biobutanol: An attractive biofuel , 2007, Biotechnology journal.

[25]  J. Heap,et al.  The ClosTron: a universal gene knock-out system for the genus Clostridium. , 2007, Journal of microbiological methods.

[26]  T. Ezeji,et al.  Bioproduction of butanol from biomass: from genes to bioreactors. , 2007, Current opinion in biotechnology.

[27]  B. Hahn-Hägerdal,et al.  Towards industrial pentose-fermenting yeast strains , 2007, Applied Microbiology and Biotechnology.

[28]  K. Schwarz,et al.  Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH , 2006, Journal of bacteriology.

[29]  Yan Lin,et al.  Ethanol fermentation from biomass resources: current state and prospects , 2006, Applied Microbiology and Biotechnology.

[30]  George N. Bennett,et al.  Intracellular Butyryl Phosphate and Acetyl Phosphate Concentrations in Clostridium acetobutylicum and Their Implications for Solvent Formation , 2005, Applied and Environmental Microbiology.

[31]  S. Junne,et al.  Antisense RNA Downregulation of Coenzyme A Transferase Combined with Alcohol-Aldehyde Dehydrogenase Overexpression Leads to Predominantly Alcohologenic Clostridium acetobutylicum Fermentations , 2003, Journal of bacteriology.

[32]  P. Dürre,et al.  Control of Butanol Formation in Clostridium acetobutylicum by Transcriptional Activation , 2002, Journal of bacteriology.

[33]  P. Soucaille,et al.  Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824 , 2002, Journal of bacteriology.

[34]  George N. Bennett,et al.  Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum , 2001, Journal of bacteriology.

[35]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[36]  E. Papoutsakis,et al.  Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? , 2000, Biotechnology and bioengineering.

[37]  E. Papoutsakis,et al.  Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. , 1999, Metabolic engineering.

[38]  Eleftherios T. Papoutsakis,et al.  Antisense RNA Strategies for Metabolic Engineering of Clostridium acetobutylicum , 1999, Applied and Environmental Microbiology.

[39]  E. Papoutsakis,et al.  The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain , 1997, Journal of bacteriology.

[40]  E. Papoutsakis,et al.  Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. , 1996, Microbiology.

[41]  E. Papoutsakis,et al.  Analysis of Degenerate Variants ofClostridium acetobutylicumATCC 824: BIOTECHNOLOGY/FOOD MICROBIOLOGY , 1996 .

[42]  U. Sauer,et al.  Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. , 1995, FEMS microbiology reviews.

[43]  Jiann-Shin Chen,et al.  Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. , 1995, FEMS microbiology reviews.

[44]  Philippe Soucaille,et al.  Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824 , 1995 .

[45]  E. Papoutsakis,et al.  In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824 , 1993, Applied and environmental microbiology.

[46]  D. Hanahan,et al.  Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[47]  D. T. Jones,et al.  Homology between hydroxybutyryl and hydroxyacyl coenzyme A dehydrogenase enzymes from Clostridium acetobutylicum fermentation and vertebrate fatty acid beta-oxidation pathways , 1989, Journal of bacteriology.

[48]  S. Ho,et al.  Site-directed mutagenesis by overlap extension using the polymerase chain reaction. , 1989, Gene.

[49]  P. Dürre,et al.  Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum , 1987, Applied Microbiology and Biotechnology.

[50]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[51]  J. Engasser,et al.  The acetone butanol fermentation on glucose and xylose. I. Regulation and kinetics in batch cultures , 1986, Biotechnology and bioengineering.

[52]  R. Marchal,et al.  Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum , 1985, Applied and environmental microbiology.

[53]  E. Papoutsakis,et al.  The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum , 1985, Biotechnology and bioengineering.

[54]  S. Gatenbeck,et al.  Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate , 1984, Applied and environmental microbiology.

[55]  Frédéric Monot,et al.  Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium , 1982, Applied and environmental microbiology.

[56]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[57]  R Gay,et al.  Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group. , 1976, Biochimica et biophysica acta.

[58]  J. Heap,et al.  The ClosTron: Mutagenesis in Clostridium refined and streamlined. , 2010, Journal of microbiological methods.

[59]  E. Papoutsakis,et al.  Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations , 2009, Biotechnology and bioengineering.

[60]  H. Bahl,et al.  Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum. , 2009, Microbiology.

[61]  L. Jarboe,et al.  Development of ethanologenic bacteria. , 2007, Advances in biochemical engineering/biotechnology.

[62]  J. Breznak,et al.  Physicochemical Factors in Growth , 2007 .

[63]  G. Bennett,et al.  Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. , 2000, Journal of molecular microbiology and biotechnology.

[64]  U. Sauer,et al.  Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum , 1995 .

[65]  P. Gerhardt,et al.  Methods for general and molecular bacteriology , 1994 .

[66]  Byung Hong Kim,et al.  Specificity of Alcohol Dehydrogenase from Clostridium acetobutylicum ATCC 4259 , 1992 .

[67]  G. Gottschalk,et al.  Purification and properties of NADP-dependent L(+)-3-hydroxybutyryl-CoA dehydrogenase from Clostridium kluyveri. , 1973, European journal of biochemistry.