A 3.6 $\mu$ s Latency Asynchronous Frame-Free Event-Driven Dynamic-Vision-Sensor

This paper presents a 128 × 128 dynamic vision sensor. Each pixel detects temporal changes in the local illumination. A minimum illumination temporal contrast of 10% can be detected. A compact preamplification stage has been introduced that allows to improve the minimum detectable contrast over previous designs, while at the same time reducing the pixel area by 1/3. The pixel responds to illumination changes in less than 3.6 μs. The ability of the sensor to capture very fast moving objects, rotating at 10 K revolutions per second, has been verified experimentally. A frame-based sensor capable to achieve this, would require at least 100 K frames per second.

[1]  John G. Harris,et al.  A time-to-first spike CMOS imager , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[2]  Anthony Hoogs,et al.  Industry and Object Recognition: Applications, Applied Research and Challenges , 2006, Toward Category-Level Object Recognition.

[3]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[4]  Hoi-Jun Yoo,et al.  A 201.4 GOPS 496 mW Real-Time Multi-Object Recognition Processor With Bio-Inspired Neural Perception Engine , 2009, IEEE Journal of Solid-State Circuits.

[5]  Eugenio Culurciello,et al.  Activity-driven, event-based vision sensors , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[6]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[7]  R.P. Kleihorst,et al.  Xetal-II: A 107 GOPS, 600 mW Massively Parallel Processor for Video Scene Analysis , 2008, IEEE Journal of Solid-State Circuits.

[8]  Kwabena Boahen,et al.  Optic nerve signals in a neuromorphic chip I: Outer and inner retina models , 2004, IEEE Transactions on Biomedical Engineering.

[9]  John Wawrzynek,et al.  Silicon Auditory Processors as Computer Peripherals , 1992, NIPS.

[10]  Charles M. Higgins,et al.  A biologically inspired modular VLSI system for visual measurement of self-motion , 2002 .

[11]  Massimo A. Sivilotti,et al.  Wiring considerations in analog VLSI systems, with application to field-programmable networks , 1992 .

[12]  Daniel Matolin,et al.  A two-stage capacitive-feedback differencing amplifier for temporal contrast IR sensors , 2010 .

[13]  Donghyun Kim,et al.  A 201.4GOPS 496mW real-time multi-object recognition processor with bio-inspired neural perception engine , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[14]  Bernabé Linares-Barranco,et al.  A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vision Systems , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Bernabé Linares-Barranco,et al.  On the design and characterization of femtoampere current-mode circuits , 2003, IEEE J. Solid State Circuits.

[16]  Gert Cauwenberghs,et al.  CMOS Camera With In-Pixel Temporal Change Detection and ADC , 2007, IEEE Journal of Solid-State Circuits.

[17]  F. Heitger,et al.  A 100×100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002, IEEE J. Solid State Circuits.

[18]  Andreas G. Andreou,et al.  Very Wide Range Tunable CMOS/Bipolar Current Mirrors with Voltage Clamped Input , 1999 .

[19]  Daniel Matolin,et al.  A Two-Stage Capacitive-Feedback Differencing Amplifier for Temporal Contrast IR Sensors , 2007, 2007 14th IEEE International Conference on Electronics, Circuits and Systems.

[20]  Bernabé Linares-Barranco,et al.  A Five-Decade Dynamic-Range Ambient-Light-Independent Calibrated Signed-Spatial-Contrast AER Retina With 0.1-ms Latency and Optional Time-to-First-Spike Mode , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  M. Gottardi,et al.  A 100 $\mu$ W 128 $\times$ 64 Pixels Contrast-Based Asynchronous Binary Vision Sensor for Sensor Networks Applications , 2009, IEEE Journal of Solid-State Circuits.

[22]  Pierre-Yves Burgi,et al.  A 128 /spl times/ 128 pixel 120 dB dynamic range vision sensor chip for image contrast and orientation extraction , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[23]  Kwabena Boahen,et al.  Optic nerve signals in a neuromorphic chip II: testing and results , 2004, IEEE Transactions on Biomedical Engineering.

[24]  Massimo Barbaro,et al.  A 100/spl times/100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002 .

[25]  Erhan Ozalevli,et al.  Reconfigurable biologically inspired visual motion systems using modular neuromorphic VLSI chips , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Andreas G. Andreou,et al.  A Contrast Sensitive Silicon Retina with Reciprocal Synapses , 1991, NIPS.

[27]  Jörg Kramer,et al.  An integrated optical transient sensor , 2002 .

[28]  Bernabé Linares-Barranco,et al.  A Spatial Contrast Retina With On-Chip Calibration for Neuromorphic Spike-Based AER Vision Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Bernabé Linares-Barranco,et al.  Current Mode Techniques for Sub-pico-Ampere Circuit Design , 2004 .

[30]  M. Arias-Estrada,et al.  Motion vision sensor architecture with asynchronous self-signaling pixels , 1997, Proceedings Fourth IEEE International Workshop on Computer Architecture for Machine Perception. CAMP'97.

[31]  V. Gruev,et al.  A pipelined temporal difference imager , 2002, IEEE Journal of Solid-State Circuits.

[32]  E. Culurciello,et al.  A biomorphic digital image sensor , 2003, IEEE J. Solid State Circuits.

[33]  Paul Wielage,et al.  XETAL-II: A 107 GOPS, 600mW Massively-Parallel Processor for Video Scene Analysis , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[34]  Amine Bermak,et al.  Arbitrated Time-to-First Spike CMOS Image Sensor With On-Chip Histogram Equalization , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[35]  Kwabena Boahen,et al.  Point-to-point connectivity between neuromorphic chips using address events , 2000 .

[36]  E. Culurciello,et al.  A 1-mW CMOS Temporal-Difference AER Sensor for Wireless Sensor Networks , 2009, IEEE Transactions on Electron Devices.

[37]  Tobi Delbrück,et al.  Temporal contrast AER pixel with 0.3%-contrast event threshold , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[38]  Tobi Delbrück,et al.  A 128 X 128 120db 30mw asynchronous vision sensor that responds to relative intensity change , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[39]  R. Etienne-Cummings,et al.  Temporal change threshold detection imager , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[40]  Mehdi Azadmehr,et al.  A foveated AER imager chip [address event representation] , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[41]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[42]  Gert Cauwenberghs,et al.  Spatial acuity modulation of an address-event imager , 2004, Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, 2004. ICECS 2004..

[43]  Daniel Matolin,et al.  A QVGA 143dB dynamic range asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[44]  Mehdi Azadmehr A foveated aer imager chip , 2005 .