Rock, Paper, and Scissors: extrinsic vs. intrinsic similarity of non-rigid shapes

This paper explores similarity criteria between non-rigid shapes. Broadly speaking, such criteria are divided into intrinsic and extrinsic, the first referring to the metric structure of the objects and the latter to the geometry of the shapes in the Euclidean space. Both criteria have their advantages and disadvantages; extrinsic similarity is sensitive to non-rigid deformations of the shapes, while intrinsic similarity is sensitive to topological noise. Here, we present an approach unifying both criteria in a single distance. Numerical results demonstrate the robustness of our approach in cases where using only extrinsic or intrinsic criteria fail.

[1]  Longin Jan Latecki,et al.  Shape Similarity Measure Based on Correspondence of Visual Parts , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[3]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[5]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[6]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[7]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[9]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[11]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[12]  Ronen Basri,et al.  Determining the similarity of deformable shapes , 1998, Vision Research.

[13]  D. Jacobs,et al.  Class Representation and Image Retrieval with Non-Metric Distances , 1998 .

[14]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Daphna Weinshall,et al.  Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..