Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment.

Pseudomonas aeruginosa continues to be a major cause of infections in Western society, in part because of its high intrinsic resistance to antibiotics. It has been demonstrated that this intrinsic resistance arises from the combination of unusually restricted outer-membrane permeability and secondary resistance mechanisms such as energy-dependent multidrug efflux and chromosomally encoded periplasmic beta-lactamase. Given this high level of natural resistance, mutational resistance to most classes of antibiotics can readily arise. In this review we summarize new insights into the mechanisms of resistance, and describe therapeutic approaches that can be used in the face of this continuing resistance threat, as well as new approaches that are being developed to combat resistance. Copyright 2000 Harcourt Publishers Ltd.

[1]  R. Hancock,et al.  Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. , 2000, Microbiology.

[2]  R. Hancock,et al.  The Amino Terminus of Pseudomonas aeruginosaOuter Membrane Protein OprF Forms Channels in Lipid Bilayer Membranes: Correlation with a Three-Dimensional Model , 2000, Journal of bacteriology.

[3]  Clifton E. Barry,et al.  A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis , 2000, Nature.

[4]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[5]  N. Høiby,et al.  Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2000, Antimicrobial Agents and Chemotherapy.

[6]  A. Huletsky,et al.  Inactivation of the ampD Gene inPseudomonas aeruginosa Leads to Moderate-Basal-Level and Hyperinducible AmpC β-Lactamase Expression , 2000, Antimicrobial Agents and Chemotherapy.

[7]  N. Høiby,et al.  Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2000, Antimicrobial Agents and Chemotherapy.

[8]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance inPseudomonas aeruginosa Biofilms , 2000, Antimicrobial Agents and Chemotherapy.

[9]  D. Sirot,et al.  Production of a TEM-24 Plasmid-Mediated Extended-Spectrum β-Lactamase by a Clinical Isolate ofPseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[10]  T. Renau,et al.  Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. , 1999, Journal of medicinal chemistry.

[11]  D. Sherman,et al.  Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability , 1999, Antimicrobial Agents and Chemotherapy.

[12]  S. Miller,et al.  Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. , 1999, Science.

[13]  H. Nikaido,et al.  Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999 .

[14]  H. Yoneyama,et al.  Interplay between the efflux pump and the outer membrane permeability barrier in fluorescent dye accumulation in Pseudomonas aeruginosa. , 1999, Biochemical and biophysical research communications.

[15]  R. Benz,et al.  Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. , 1999, Biochemistry.

[16]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[17]  H. Yoneyama,et al.  Resistance to β-Lactam Antibiotics inPseudomonas aeruginosa Due to Interplay between the MexAB-OprM Efflux Pump and β-Lactamase , 1999, Antimicrobial Agents and Chemotherapy.

[18]  Gianfranco Amicosante,et al.  Structure of In31, ablaIMP-Containing Pseudomonas aeruginosa Integron Phyletically Related to In5, Which Carries an Unusual Array of Gene Cassettes , 1999, Antimicrobial Agents and Chemotherapy.

[19]  R. Hancock,et al.  Biological Properties of Structurally Related α-Helical Cationic Antimicrobial Peptides , 1999, Infection and Immunity.

[20]  T. Takenouchi,et al.  Detection of gyrA Mutations among 335Pseudomonas aeruginosa Strains Isolated in Japan and Their Susceptibilities to Fluoroquinolones , 1999, Antimicrobial Agents and Chemotherapy.

[21]  L. Martínez-Martínez,et al.  Resistance of Pseudomonas aeruginosa to Imipenem Induced by Eluates from Siliconized Latex Urinary Catheters Is Related to Outer Membrane Protein Alterations , 1999, Antimicrobial Agents and Chemotherapy.

[22]  T. Köhler,et al.  Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems , 1999, Antimicrobial Agents and Chemotherapy.

[23]  T. Köhler,et al.  In Vivo Emergence of Multidrug-Resistant Mutants ofPseudomonas aeruginosa Overexpressing the Active Efflux System MexA-MexB-OprM , 1999, Antimicrobial Agents and Chemotherapy.

[24]  N. Masuda,et al.  Interplay between Chromosomal β-Lactamase and the MexAB-OprM Efflux System in Intrinsic Resistance to β-Lactams inPseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[25]  M S Pepe,et al.  Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. , 1999, The New England journal of medicine.

[26]  V. Jarlier,et al.  Type II Topoisomerase Mutations in Ciprofloxacin-Resistant Strains of Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[27]  R. Hancock,et al.  Are we approaching the end of the antibiotic era , 1998 .

[28]  H. Nikaido Antibiotic resistance caused by gram-negative multidrug efflux pumps. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[29]  K. Poole,et al.  Contribution of Outer Membrane Efflux Protein OprM to Antibiotic Resistance in Pseudomonas aeruginosa Independent of MexAB , 1998, Antimicrobial Agents and Chemotherapy.

[30]  R. Hancock The therapeutic potential of cationic peptides. , 1998, Expert opinion on investigational drugs.

[31]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[32]  D. Livermore,et al.  Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases. , 1997, The Journal of antimicrobial chemotherapy.

[33]  J. Karlowsky,et al.  Aminoglycoside Adaptive Resistance , 1997, Pharmacotherapy.

[34]  A. Bayer,et al.  Adaptive resistance of Pseudomonas aeruginosa induced by aminoglycosides and killing kinetics in a rabbit endocarditis model , 1997, Antimicrobial agents and chemotherapy.

[35]  K. Tateda,et al.  Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin , 1996, Antimicrobial agents and chemotherapy.

[36]  C. Winstanley,et al.  Spread of β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic , 1996, The Lancet.

[37]  R. Hancock,et al.  The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[38]  M E Campbell,et al.  Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis , 1996, Journal of clinical microbiology.

[39]  T. Nakae,et al.  Outer membrane permeability of β‐lactamase inhibitors in Pseudomonas aeruginosa , 1995 .

[40]  J. Wylie,et al.  The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa , 1995, Journal of bacteriology.

[41]  H. Nikaido,et al.  Prevention of drug access to bacterial targets: permeability barriers and active efflux. , 1994, Science.

[42]  R. Hancock,et al.  Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[43]  J. Quinn,et al.  Antimicrobials in cystic fibrosis: emergence of resistance and implications for treatment. , 1992, Seminars in respiratory infections.

[44]  R. Hancock,et al.  Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability , 1992, Journal of bacteriology.

[45]  A. Smith,et al.  Disposition of drugs in cystic fibrosis. III. Acetaminophen , 1991, Clinical pharmacology and therapeutics.

[46]  B. Ramsey,et al.  Disposition of drugs in cystic fibrosis. I. Sulfamethoxazole and trimethoprim , 1991, Clinical pharmacology and therapeutics.

[47]  B. Ramsey,et al.  Pharmacokinetics of ticarcillin in patients with cystic fibrosis: A controlled prospective study , 1990, Clinical pharmacology and therapeutics.

[48]  M. Hodson Antibiotic treatment. Aerosol therapy. , 1988, Chest.

[49]  J. Prandota Drug disposition in cystic fibrosis: progress in understanding pathophysiology and pharmacokinetics. , 1987, The Pediatric infectious disease journal.

[50]  Arnold L. Smith,et al.  Antibiotic Pharmacokinetics in Cystic Fibrosis , 1987, Clinical pharmacokinetics.

[51]  A. Smith,et al.  Pharmacokinetics of ciprofloxacin in cystic fibrosis , 1987, Antimicrobial Agents and Chemotherapy.

[52]  B. Ramsey,et al.  Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. , 1985, The American review of respiratory disease.

[53]  M. Miller,et al.  NEBULISED COLOMYCIN FOR EARLY PSEUDOMONAS COLONISATION IN CYSTIC FIBROSIS , 1985, The Lancet.

[54]  B. Ramsey,et al.  Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. , 1984, The Journal of pediatrics.

[55]  B. Ramsey,et al.  Bioactivity of gentamicin in purulent sputum from patients with cystic fibrosis or bronchiectasis: comparison with activity in serum. , 1983, The Journal of infectious diseases.

[56]  D. Dwyer,et al.  Whirlpool-associated Pseudomonas aeruginosa urinary tract infections. , 1983, JAMA.

[57]  J. Eisenberg,et al.  INHALED ANTIBIOTICS IN CYSTIC FIBROSIS , 1983, The Lancet.

[58]  W. Nichols,et al.  THE PENETRATION OF ANTIBIOTICS THROUGH SODIUM ALGINATE AND THROUGH THE EXOPOLYSACCHARIDE OF A MUCOID STRAIN OF PSEUDOMONAS AERUGINOSA , 1981, The Lancet.

[59]  R. Stern,et al.  Multiple of isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. , 1979, The Journal of infectious diseases.

[60]  L. Cluff,et al.  Pseudomonas bacteremia. Review of 108 cases. , 1976, The American journal of medicine.

[61]  United States geographic bacteria susceptibility patterns. 1997 ASCP Susceptibility Testing Group. , 1999, Diagnostic microbiology and infectious disease.

[62]  H. Yoneyama,et al.  Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. , 1999, Antimicrobial agents and chemotherapy.

[63]  N. Masuda,et al.  Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. , 1999, Antimicrobial Agents and Chemotherapy.

[64]  R. Hancock,et al.  The bacterial outer membrane as a drug barrier. , 1997, Trends in microbiology.

[65]  B. Ramsey,et al.  Aerosol administration of antibiotics in patients with cystic fibrosis , 1994 .

[66]  A. Baltch,et al.  Pseudomonas aeruginosa : infections and treatment , 1994 .

[67]  D. Speert Pseudomonas aeruginosa-Phagocytic Cell Interactions , 1993 .

[68]  J. Dodge,et al.  Cystic fibrosis-- current topics , 1993 .

[69]  M. Bendinelli,et al.  Pseudomonas aeruginosa as an Opportunistic Pathogen , 1993, Infectious Agents and Pathogenesis.

[70]  K. De Boeck,et al.  Treatment of Pseudomonas lung infection in cystic fibrosis with piperacillin plus tobramycin versus ceftazidime monotherapy: Preliminary communication , 1989, Pediatric pulmonology.

[71]  H. Nikaido CHAPTER 4 – Outer Membrane Permeability of Pseudomonas aeruginosa , 1986 .

[72]  R. Stanier,et al.  The Bacteria: A treatise on structure and function. Vol. Ill: Biosynthesis. Vol. IY: The physiology of growth. , 1960 .