INSPM: An interactive evolutionary multi-objective algorithm with preference model

In this paper an interactive method for modeling the preferences of a Decision-Maker (DM) is employed to guide a modified version of the NSGA-II algorithm: the Interactive Non-dominated Sorting algorithm with Preference Model (INSPM). The INSPM's task is to find a non-uniform sampling of the Pareto-optimal front with a detailed sampling of the DM's preferred regions and a coarse sampling of the non-preferred regions. In the proposed technique, a Radial Basis Function (RBF) network is employed to construct a function which represents the DM's utility function using ordinal information only, extracted from queries to the DM. The INSPM algorithm calls the DM's preference model via a Dynamic Crowding Distance (DCD) density control method which provides the mechanism for increasing the sampling in the preferred regions and for decreasing it in non-preferred regions which allows a fine-tunning control of the Pareto-optimal front sampling density.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[3]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[4]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  Ricardo H. C. Takahashi,et al.  Decision-Maker Preference Modeling in Interactive Multiobjective Optimization , 2013, EMO.

[7]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[8]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[10]  Murat Köksalan,et al.  An Interactive Territory Defining Evolutionary Algorithm: iTDEA , 2010, IEEE Transactions on Evolutionary Computation.

[11]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[14]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[15]  Ricardo H. C. Takahashi,et al.  Modeling Decision-Maker Preferences through Utility Function Level Sets , 2011, EMO.

[16]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[17]  Jun Wu,et al.  Dynamic Crowding Distance?A New Diversity Maintenance Strategy for MOEAs , 2008, 2008 Fourth International Conference on Natural Computation.