The relationship between total organic carbon and bottom water redox state in North American black shales

[1]  T. Moslow,et al.  Extremely high resolution XRF core scanning reveals the early Triassic depositional history of the Montney Formation in northeastern British Columbia, Canada , 2024, Palaeogeography, Palaeoclimatology, Palaeoecology.

[2]  David S. Jones,et al.  Timing and tempo of organic carbon burial in the Monterey Formation of the Santa Barbara Basin and relationships with Miocene climate , 2023, Earth and Planetary Science Letters.

[3]  S. Grasby,et al.  Multiple diachronous “Black Seas” mimic global ocean anoxia during the latest Devonian , 2023, Geology.

[4]  B. Hart,et al.  Basin-scale reconstruction of euxinia and Late Devonian mass extinctions , 2023, Nature.

[5]  E. Grossman,et al.  Restoring Source Rock Initial Quality and Quantity with Kinetic-Based Inversion - Applied to the Wolfcamp Play in the Permian Delaware Basin , 2023, SSRN Electronic Journal.

[6]  D. Fike,et al.  A global reassessment of the controls on iron speciation in modern sediments and sedimentary rocks: A dominant role for diagenesis , 2022, Geochimica et Cosmochimica Acta.

[7]  B. Hart,et al.  hvRevisiting paleoenvironmental analyses and interpretations of organic-rich deposits: The Importance of TOC corrections , 2022, Organic Geochemistry.

[8]  T. Goepfert,et al.  Major Early-Middle Devonian oceanic oxygenation linked to early land plant evolution detected using high-resolution U isotopes of marine limestones , 2022, Earth and Planetary Science Letters.

[9]  E. al.,et al.  Supplemental Material: No effect of thermal maturity on the Mo, U, Cd, and Zn isotope compositions of Lower Jurassic organic-rich sediments , 2022, Geology.

[10]  N. Planavsky,et al.  A long-term record of early to mid-Paleozoic marine redox change , 2021, Science Advances.

[11]  A. Turchyn,et al.  Supplemental Material: A quantification of the effect of diagenesis on the paleoredox record in mid-Proterozoic sedimentary rocks , 2021, Geology.

[12]  S. Poulton The Iron Speciation Paleoredox Proxy , 2021 .

[13]  M. McMechan,et al.  A seismic structural overview of Liard Basin, Northeast British Columbia, Canada , 2021 .

[14]  Jeremy H. Wei,et al.  Redox and paleoenvironmental conditions of the Devonian-Carboniferous Sappington Formation, southwestern Montana, and comparison to the Bakken Formation, Williston Basin , 2020, Palaeogeography, Palaeoclimatology, Palaeoecology.

[15]  J. Crowley,et al.  Late Devonian magmatism and clastic deposition in the upper Earn Group (central Yukon, Canada) mark the transition from passive to active margin along western Laurentia , 2020, Canadian Journal of Earth Sciences.

[16]  D. Porcelli,et al.  The influence of thermal maturity on the stable isotope compositions and concentrations of molybdenum, zinc and cadmium in organic-rich marine mudrocks , 2020, Geochimica et Cosmochimica Acta.

[17]  J. Owens,et al.  Marine redox variability from Baltica during extinction events in the latest Ordovician–early Silurian , 2020 .

[18]  F. Baudin,et al.  Trace metal elements as paleoenvironmental proxies: Why should we account for sedimentation rate variations? , 2020 .

[19]  A. Bekker,et al.  Development of Iron Speciation Reference Materials for Palaeoredox Analysis , 2020, Geostandards and Geoanalytical Research.

[20]  T. Algeo,et al.  A re-assessment of elemental proxies for paleoredox analysis , 2020, Chemical Geology.

[21]  X. Janson,et al.  Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the late Paleozoic ice age , 2020 .

[22]  Xiahong Feng,et al.  The Road River Group of northern Yukon, Canada: early Paleozoic deep-water sedimentation within the Great American Carbonate Bank , 2020 .

[23]  P. Hall,et al.  Elevated sedimentary removal of Fe, Mn, and trace elements following a transient oxygenation event in the Eastern Gotland Basin, central Baltic Sea , 2020 .

[24]  Benjamin F. Dattilo,et al.  Revised sequence stratigraphy of the upper Katian Stage (Cincinnatian) strata in the Cincinnati Arch reference area: Geological and paleontological implications , 2020 .

[25]  C. Slomp,et al.  Unraveling the Mineralogical Complexity of Sediment Iron Speciation Using Sequential Extractions , 2020, Geochemistry, Geophysics, Geosystems.

[26]  S. Husted,et al.  Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox , 2019, Scientific Reports.

[27]  T. Lyons,et al.  A multi-basin redox reconstruction for the Miocene Monterey Formation, California, USA , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[28]  Benjamin C Gill,et al.  Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America , 2019, Geobiology.

[29]  C. Deutsch,et al.  Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction , 2018, Science.

[30]  M. Gomes,et al.  Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization , 2018, Nature Communications.

[31]  E. Sperling,et al.  On the edge of exceptional preservation: insights into the role of redox state in Burgess Shale-type taphonomic windows from the Mural Formation, Alberta, Canada. , 2018, Emerging topics in life sciences.

[32]  D. Canfield,et al.  The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice , 2018, American Journal of Science.

[33]  A. Anbar,et al.  Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction , 2018, Science Advances.

[34]  W. Fischer,et al.  The effects of metamorphism on iron mineralogy and the iron speciation redox proxy , 2018 .

[35]  J. Zonneveld,et al.  Palaeogeographic setting, lithostratigraphy, and sedimentary framework of the Lower Triassic Montney Formation of western Alberta and northeastern British Columbia , 2018 .

[36]  C. Henderson,et al.  Sedimentary facies, petrology, reservoir characteristics, conodont biostratigraphy and sequence stratigraphic framework of a continuous (395m) full diameter core of the Lower Triassic Montney Fm, northeastern British Columbia , 2018 .

[37]  M. Ducros,et al.  Basin scale distribution of organic matter in marine fine-grained sedimentary rocks: Insight from sequence stratigraphy and multi-proxies analysis in the Montney and Doig formations , 2017 .

[38]  K. Kelley,et al.  The hyper-enrichment of V and Zn in black shales of the Late Devonian-Early Mississippian Bakken Formation (USA) , 2017 .

[39]  C. Bjerrum,et al.  Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the latest Ordovician glaciation , 2017 .

[40]  G. Gambacorta,et al.  Anoxia controlled by relative sea-level changes: An example from the Mississippian Barnett Shale Formation , 2016 .

[41]  R. Thunell,et al.  Rapid organic matter sulfurization in sinking particles from the Cariaco Basin water column , 2016 .

[42]  H. Sanei,et al.  Effect of thermal maturity on remobilization of molybdenum in black shales , 2016 .

[43]  B. Beauchamp,et al.  Early Triassic productivity crises delayed recovery from world's worst mass extinction , 2016 .

[44]  Shikha Sharma,et al.  Role of alternating redox conditions in the formation of organic-rich interval in the Middle Devonian Marcellus Shale, Appalachian Basin, USA , 2016 .

[45]  L. Kump,et al.  Marine anoxia and delayed Earth system recovery after the end-Permian extinction , 2016, Proceedings of the National Academy of Sciences.

[46]  J. Zonneveld,et al.  Determining the provenance of Triassic sedimentary rocks in northeastern British Columbia and western Alberta using detrital zircon geochronology, with implications for regional tectonics , 2016 .

[47]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[48]  J. Trabucho-Alexandre Organic Matter‐Rich Shale Depositional Environments , 2015 .

[49]  S. Katsev,et al.  Organic carbon burial efficiencies in sediments: The power law of mineralization revisited , 2015 .

[50]  N. Butterfield,et al.  A global transition to ferruginous conditions in the early Neoproterozoic oceans , 2015 .

[51]  R. B. Perkins,et al.  The relative mobility of trace elements from short-term weathering of a black shale , 2015 .

[52]  B. Hart,et al.  Programmed pyrolysis (Rock-Eval) data and shale paleoenvironmental analyses: A review , 2015 .

[53]  E. Achterberg,et al.  Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean , 2015, Proceedings of the National Academy of Sciences.

[54]  G. Lash,et al.  Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin , 2014 .

[55]  R. Wood,et al.  Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments , 2014 .

[56]  J. Trabucho-Alexandre More gaps than shale: erosion of mud and its effect on preserved geochemical and palaeobiological signals , 2014 .

[57]  Hui Jin,et al.  Characterization for Source Rock Potential of the Bakken Shales in the Williston Basin, North Dakota and Montana , 2013 .

[58]  E. Sperling,et al.  Paleoredox and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York , 2013, American Journal of Science.

[59]  A. Knoll,et al.  A basin redox transect at the dawn of animal life , 2012 .

[60]  T. Algeo,et al.  Paleoceanographic applications of trace-metal concentration data , 2012 .

[61]  T. Lyons,et al.  Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies , 2012 .

[62]  M. Clapham,et al.  End-Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty-First Century? , 2012 .

[63]  Katherine W. Schmid,et al.  Unconventional natural gas resources in Pennsylvania: The backstory of the modern Marcellus Shale play , 2011 .

[64]  B. Peucker‐Ehrenbrink,et al.  Re-assessing the surface cycling of molybdenum and rhenium , 2011 .

[65]  D. Briggs,et al.  PALEOECOLOGY OF THE OLENID TRILOBITE TRIARTHRUS: NEW EVIDENCE FROM BEECHER'S TRILOBITE BED AND OTHER SITES OF PYRITIZATION , 2011 .

[66]  Thomas E. Ewing,et al.  Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana , 2011 .

[67]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[68]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[69]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.

[70]  D. Canfield,et al.  Spatial variability in oceanic redox structure 1.8 billion years ago , 2010 .

[71]  A. Sessions,et al.  A Stratified Redox Model for the Ediacaran Ocean , 2010, Science.

[72]  A. Knoll,et al.  An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA , 2010 .

[73]  T. Algeo,et al.  Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation , 2009 .

[74]  R. Loucks,et al.  Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction , 2008 .

[75]  A. Knoll,et al.  Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry , 2008, Science.

[76]  B. Beckmann,et al.  Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters , 2008 .

[77]  Stefan Schouten,et al.  Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis , 2008 .

[78]  A. Anbar,et al.  Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans , 2008 .

[79]  A. Bekker,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[80]  Stephen C. Ruppel,et al.  Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas , 2007 .

[81]  D. Jarvie,et al.  Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment , 2007 .

[82]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[83]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[84]  Kliti Grice,et al.  Photic Zone Euxinia During the Permian-Triassic Superanoxic Event , 2005, Science.

[85]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[86]  T. Lyons,et al.  Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales , 2004 .

[87]  T. Algeo Can marine anoxic events draw down the trace element inventory of seawater , 2004 .

[88]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[89]  J. Disnar,et al.  Organic matter accumulation and preservation controls in a deep sea modern environment: an example from Namibian slope sediments. , 2004 .

[90]  F. Ettensohn Modeling the nature and development of major Paleozoic clastic wedges in the Appalachian Basin, USA , 2004 .

[91]  T. Anderson,et al.  SOURCES AND MECHANISMS FOR THE ENRICHMENT OF HIGHLY REACTIVE IRON IN EUXINIC BLACK SEA SEDIMENTS , 2004 .

[92]  T. Lyons,et al.  A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin , 2003 .

[93]  J. Damsté,et al.  Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation , 2003 .

[94]  R. Raiswell,et al.  The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition , 2002 .

[95]  T. Lyons,et al.  An integrated assessment of a “type euxinic” deposit: Evidence for multiple controls on black shale deposition in the middle Devonian Oatka Creek formation , 2002 .

[96]  J. Baldock,et al.  Organic Carbon Composition of Marine Sediments: Effect of Oxygen Exposure on Oil Generation Potential , 2001, Science.

[97]  R. Raiswell,et al.  An Indicator of Water-Column Anoxia: Resolution of Biofacies Variations in the Kimmeridge Clay (Upper Jurassic, U.K.) , 2001 .

[98]  C. Heip,et al.  Reactive iron in Black Sea Sediments: implications for iron cycling , 2001 .

[99]  A. Roychoudhury,et al.  The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters , 2000 .

[100]  R. Berner,et al.  A field study of the chemical weathering of ancient sedimentary organic matter , 2000 .

[101]  B. Erickson,et al.  Molybdenum(VI) speciation in sulfidic waters:. Stability and lability of thiomolybdates , 2000 .

[102]  R. Bustin,et al.  Production and preservation of organic matter during deposition of the Bakken Formation (Late Devonian and Early Mississippian), Williston Basin , 1998 .

[103]  R. T. Ryder,et al.  Black Shale Source Rocks and Oil Generation in the Cambrian and Ordovician of the Central Appalachian Basin, USA , 1998 .

[104]  D. Canfield,et al.  Sources of iron for pyrite formation in marine sediments , 1998 .

[105]  R. Pattrick,et al.  Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence , 1996 .

[106]  R. Bustin,et al.  Lithofacies and paleoenvironments of the Upper Devonian and Lower Mississippian Bakken Formation, Williston Basin , 1996 .

[107]  D. Canfield,et al.  A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. , 1994, Chemical geology.

[108]  L. Pratt,et al.  Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: Reevaluation of sulfur reactions during early diagenesis in marine environments , 1992 .

[109]  S. Emerson,et al.  Ocean anoxia and the concentrations of molybdenum and vanadium in seawater , 1991 .

[110]  F. F. Langford,et al.  Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon , 1990 .

[111]  D. Canfield Reactive iron in marine sediments. , 1989, Geochimica et cosmochimica acta.

[112]  W. A. Thomas,et al.  Acadian dextral transpression and synorogenic sedimentary successions in the Appalachians , 1988 .

[113]  F. Ettensohn Rates of Relative Plate Motion During the Acadian Orogeny Based on the Spatial Distribution of Black Shales , 1987, The Journal of Geology.

[114]  D. Canfield,et al.  The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales , 1986 .

[115]  Robert Raiswell,et al.  Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory , 1983 .

[116]  R. Gutschick,et al.  Mississippian continental margins of the conterminous usa , 1983 .

[117]  M. Lewan,et al.  Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks , 1982 .

[118]  R. A. Price,et al.  Geodynamic evolution of the Canadian Cordillera - progress and problems' , 1979 .

[119]  K. Turekian,et al.  Molybdenum in marine deposits , 1973 .

[120]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .

[121]  C. Mitchell,et al.  Aligned trace fossils from the Utica Shale: implications for mode of life and feeding in the trilobite Triarthrus beckii , 2017 .

[122]  The Unconventional Gas Resources of Mississippian-Devonian Shales in the Liard Basin of British Columbia, the Northwest Territories, and Yukon , 2016 .

[123]  Kristin M. Carter,et al.  A GEOLOGIC PLAY BOOK FOR UTICA SHALE APPALACHIAN BASIN EXPLORATION , 2015 .

[124]  F. Ettensohn,et al.  Large-scale Tectonic Controls on the Origin of Paleozoic Dark-shale Source-rock Basins: Examples from the Appalachian Foreland Basin, Eastern United States , 2012 .

[125]  R. Baumgardner,et al.  Wolfberry (Wolfcampian-Leonardian) Deep-Water Depositional Systems in the Midland Basin: Stratigraphy, Lithofacies, Reservoirs, , 2012 .

[126]  D. Canfield,et al.  The Iron Biogeochemical Cycle Past and Present , 2012 .

[127]  C. Fielding,et al.  The late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns , 2008 .

[128]  B. Kerr,et al.  Regional "Shale Gas" Potential of the Triassic Doig and Montney Formations, Northeastern British Columbia , 2006 .

[129]  N. Rast,et al.  Mid-Paleozoic orogenesis in the North Atlantic: The Acadian orogeny , 1993 .

[130]  J. Damsté,et al.  Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere : state of the art and future research , 1990 .

[131]  J. Damsté,et al.  Origin of organic sulphur compounds and sulphur-containing high molecular weight substances in sediments and immature crude oils , 1988 .

[132]  Rodger T. Faill The Acadian orogeny and the Catskill Delta , 1985 .

[133]  C. Byers Biofacies Patterns in Euxinic Basins a General Model , 1977 .

[134]  K. H. Wedepohl Environmental influences on the chemical composition of shales and clays , 1971 .