Overcoming diffraction limit: From microscopy to nanoscopy

ABSTRACT The advancement of super-resolution imaging technologies has significantly extended microscopy to nanoscopy, making it possible for the study of physical, chemical, and biological processes at the length scale that is much smaller than the wavelength of light. However, challenges still remain, including the development of high-resolution devices for real-time imaging of living cells in cost effective ways. In this review, a small number of super-resolution microscopic techniques, which we call “nanoscopy,” are classified by their working principles. Not only is fluorescence microscopy such as stochastic optical reconstruction microscopy (STORM) or photo-activated localized microscopy (PALM), stimulated emission depletion (STED), and structured illumination microscopy (SIM) reviewed in detail, but also label-free microscopy whose functions are originated from nanostructures such as micro-curvilinear lens, disordered media, super-oscillation, and metamaterials. Comprehensive discussion including the advantages and disadvantages of each nanoscopy is followed.

[1]  Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[2]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[3]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[4]  E. J. Ambrose A Surface Contact Microscope for the study of Cell Movements , 1956, Nature.

[5]  Ambrose Ej A surface contact microscope for the study of cell movements. , 1956 .

[6]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[7]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[8]  Vaidman,et al.  Properties of a quantum system during the time interval between two measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[9]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[10]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[11]  J. Kirz,et al.  Soft X-ray microscopes and their biological applications , 1995, Quarterly Reviews of Biophysics.

[12]  R. Webb Confocal optical microscopy , 1996 .

[13]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[14]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[15]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[16]  Gilbert D. Feke,et al.  Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens , 1999 .

[17]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[18]  T. Kues,et al.  Imaging and tracking of single GFP molecules in solution. , 2000, Biophysical journal.

[19]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[21]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[22]  R. Heintzmann,et al.  Saturated patterned excitation microscopy--a concept for optical resolution improvement. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[24]  Nicholas X. Fang,et al.  Rapid growth of evanescent wave by a silver superlens , 2003 .

[25]  Stefan W. Hell,et al.  Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution , 2003 .

[26]  L H Schaefer,et al.  Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach , 2004, Journal of microscopy.

[27]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Allen Taflove,et al.  Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. , 2004, Optics express.

[29]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[30]  Richard J. Blaikie,et al.  Imaging through planar silver lenses in the optical near field , 2005 .

[31]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[32]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[34]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[35]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[36]  Zhaowei Liu,et al.  Theory of optical imaging beyond the diffraction limit with a far-field superlens , 2006, SPIE Optics + Photonics.

[37]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[38]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[39]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[40]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[41]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[42]  Nikolay I. Zheludev,et al.  Focusing of Light by a Nano-Hole Array , 2006 .

[43]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[44]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[45]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[46]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[47]  Yi Xiong,et al.  Far-field optical superlens. , 2007, Nano letters.

[48]  Nikolay I. Zheludev,et al.  Optical super-resolution through super-oscillations , 2007 .

[49]  Yi Xiong,et al.  Experimental studies of far-field superlens for sub-diffractional optical imaging. , 2007, Optics express.

[50]  Nikolay Zheludev,et al.  Focusing of light by a nanohole array , 2007 .

[51]  A. Egner,et al.  Two-color far-field fluorescence nanoscopy based on photoswitchable emitters , 2007 .

[52]  Yi Xiong,et al.  Development of optical hyperlens for imaging below the diffraction limit. , 2007, Optics express.

[53]  S. Hell,et al.  Two-color far-field fluorescence nanoscopy. , 2007, Biophysical journal.

[54]  A. Kildishev,et al.  Engineering space for light via transformation optics. , 2007, Optics letters.

[55]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[56]  N. Zheludev,et al.  Nanohole array as a lens. , 2008, Nano letters.

[57]  Alexander Egner,et al.  Isotropic 3D Nanoscopy based on single emitter switching. , 2008, Optics express.

[58]  Zhaowei Liu,et al.  Ray optics at a deep-subwavelength scale: a transformation optics approach. , 2008, Nano letters.

[59]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[60]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[61]  S. Ram,et al.  High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. , 2008, Biophysical journal.

[62]  R. Weisman,et al.  Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes. , 2008, Nano letters.

[63]  Andreas Schönle,et al.  Resolution scaling in STED microscopy. , 2008, Optics express.

[64]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[65]  Hervé Rigneault,et al.  Direct imaging of photonic nanojets. , 2008, Optics express.

[66]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[67]  Changtao Wang,et al.  Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. , 2008, Optics express.

[68]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[69]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[70]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[71]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[72]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[73]  Christian Eggeling,et al.  STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .

[74]  Bernardo L. Sabatini,et al.  Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy , 2009, Neuron.

[75]  C. Green,et al.  Analysis of replication factories in human cells by super-resolution light microscopy , 2009, BMC Cell Biology.

[76]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[77]  K. Chou,et al.  Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. , 2009, Biophysical journal.

[78]  Xu Liu,et al.  Subwavelength focusing by a micro/nanofiber array. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[80]  S.W. HELL,et al.  A compact STED microscope providing 3D nanoscale resolution , 2009, Journal of microscopy.

[81]  Philip Kim,et al.  Near-field focusing and magnification through self-assembled nanoscale spherical lenses , 2009, Nature.

[82]  Gael Moneron,et al.  Two-photon excitation STED microscopy. , 2009, Optics express.

[83]  Roman Schmidt,et al.  Mitochondrial cristae revealed with focused light. , 2009, Nano letters.

[84]  Xiangqun Zeng,et al.  Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique. , 2010, Journal of chemical education.

[85]  Christian Eggeling,et al.  Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. , 2010, Biophysical journal.

[86]  Daniel R. Mason,et al.  Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. , 2010, Optics letters.

[87]  S. E. Irvine,et al.  Fast Sted Microscopy with Continuous Wave Fiber Lasers References and Links , 2022 .

[88]  C. Kuang,et al.  Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings , 2010 .

[89]  Zhaowei Liu,et al.  Plasmonic structured illumination microscopy. , 2010, Nano letters.

[90]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[91]  Zhaowei Liu,et al.  Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. , 2010, Nature communications.

[92]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[93]  G. Yuan,et al.  High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices , 2010 .

[94]  Jörg Enderlein,et al.  Image scanning microscopy. , 2010, Physical review letters.

[95]  Sapna A. Shroff,et al.  Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[96]  Thomas Müller-Reichert,et al.  Cortical Constriction During Abscission Involves Helices of ESCRT-III–Dependent Filaments , 2011, Science.

[97]  M. Neil,et al.  Remodelling of Cortical Actin Where Lytic Granules Dock at Natural Killer Cell Immune Synapses Revealed by Super-Resolution Microscopy , 2011, PLoS biology.

[98]  Andrew G. York,et al.  Confined Activation and Subdiffractive Localization Enables Whole-Cell PALM with Genetically Expressed Probes , 2011, Nature Methods.

[99]  S. Hell,et al.  Sharper low-power STED nanoscopy by time gating , 2011, Nature Methods.

[100]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[101]  S. Hell,et al.  Dual-label STED nanoscopy of living cells using photochromism. , 2011, Nano letters.

[102]  Johann Engelhardt,et al.  Parallelized STED fluorescence nanoscopy. , 2011, Optics express.

[103]  Zengbo Wang,et al.  Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. , 2011, Nature communications.

[104]  E. G. van Putten,et al.  Scattering lens resolves sub-100 nm structures with visible light. , 2011, Physical review letters.

[105]  Xu Liu,et al.  Microsphere based microscope with optical super-resolution capability , 2011 .

[106]  S. Hell,et al.  Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. , 2011, Optics express.

[107]  Allen Taflove,et al.  Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet , 2011, Optics express.

[108]  M. Gustafsson,et al.  Super-resolution 3D microscopy of live whole cells using structured illumination , 2011, Nature Methods.

[109]  U Valentin Nägerl,et al.  Two-color STED microscopy of living synapses using a single laser-beam pair. , 2011, Biophysical journal.

[110]  J. Rothman,et al.  Two-color STED microscopy in living cells , 2011, Biomedical optics express.

[111]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.

[112]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[113]  A. Kildishev,et al.  Transformation optics and metamaterials , 2011 .

[114]  S. Hell,et al.  MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM , 2012, Microscopy research and technique.

[115]  Ilker S. Bayer,et al.  Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. , 2012, Advances in colloid and interface science.

[116]  Daeshik Kang,et al.  Shape‐Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets , 2012, Advanced materials.

[117]  A. Kraegeloh,et al.  STED microscopy and its applications: new insights into cellular processes on the nanoscale. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[118]  Arash Darafsheh,et al.  Optical super-resolution by high-index liquid-immersed microspheres , 2012 .

[119]  Dylan Lu,et al.  Hyperlenses and metalenses for far-field super-resolution imaging , 2012, Nature Communications.

[120]  Stefan W. Hell,et al.  Nanoscopy in a Living Mouse Brain , 2012, Science.

[121]  Hari Shroff,et al.  Resolution Doubling in Live, Multicellular Organisms via Multifocal Structured Illumination Microscopy , 2012, Nature Methods.

[122]  M. Davidson,et al.  Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination , 2012, Proceedings of the National Academy of Sciences.

[123]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[124]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[125]  G. C. Rogers,et al.  Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization , 2012, Nature Cell Biology.

[126]  Mark Bates,et al.  Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[127]  E. Stefani,et al.  Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy. , 2012, Mitochondrion.

[128]  Martin J Booth,et al.  Adaptive optics enables 3D STED microscopy in aberrating specimens. , 2012, Optics express.

[129]  Stephan J Sigrist,et al.  Multi‐colour direct STORM with red emitting carbocyanines , 2012, Biology of the cell.

[130]  Bernardo L Sabatini,et al.  Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. , 2013, Biophysical journal.

[131]  T. Cui,et al.  Broadband All‐Dielectric Magnifying Lens for Far‐Field High‐Resolution Imaging , 2013, Advanced materials.

[132]  Reto Fiolka,et al.  Phase optimisation for structured illumination microscopy. , 2013, Optics express.

[133]  U Valentin Nägerl,et al.  Two-photon excitation STED microscopy in two colors in acute brain slices. , 2013, Biophysical journal.

[134]  Yongkeun Park,et al.  Subwavelength light focusing using random nanoparticles , 2013, Nature Photonics.

[135]  J. Engelhardt,et al.  4Pi Microscopy. , 2013, Methods in molecular biology.

[136]  Kai Wicker,et al.  Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. , 2013, Optics express.

[137]  Andrew G. York,et al.  Instant super-resolution imaging in live cells and embryos via analog image processing , 2013, Nature Methods.

[138]  Tao Wang,et al.  Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy , 2013, Light: Science & Applications.

[139]  Michael W. Davidson,et al.  Single molecule localization microscopy for superresolution , 2013 .

[140]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[141]  Laurent Cognet,et al.  Identification and super-resolution imaging of ligand-activated receptor dimers in live cells , 2013, Scientific Reports.

[142]  Nikolay I. Zheludev,et al.  Super-oscillatory optical needle , 2013 .

[143]  Nikolay I. Zheludev,et al.  Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging , 2013 .

[144]  E. Hosy,et al.  High-content super-resolution imaging of live cell by uPAINT. , 2013, Methods in molecular biology.

[145]  Ying S Hu,et al.  Single-molecule super-resolution light-sheet microscopy. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[146]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[147]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[148]  Karel Fliegel,et al.  Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation. , 2014, Optics express.

[149]  Yongkeun Park,et al.  Full-field subwavelength imaging using a scattering superlens. , 2014, Physical review letters.

[150]  U. Nägerl,et al.  Dissecting tripartite synapses with STED microscopy , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[151]  Zengbo Wang,et al.  Optical resonances in microsphere photonic nanojets , 2013 .

[152]  Prabuddha Sengupta,et al.  Superresolution imaging of biological systems using photoactivated localization microscopy. , 2014, Chemical reviews.

[153]  Minghui Hong,et al.  Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. , 2014, ACS nano.

[154]  Aydogan Ozcan,et al.  Tunable Vapor-Condensed Nanolenses , 2014, ACS nano.

[155]  Zhaowei Liu,et al.  Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. , 2014, Nano letters.

[156]  Ignacio Izeddin,et al.  Accessing the third dimension in localization-based super-resolution microscopy. , 2014, Physical chemistry chemical physics : PCCP.

[157]  Shean-Jen Chen,et al.  Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device , 2014, Biomedical optics express.

[158]  Natalia M. Litchinitser,et al.  Experimental demonstration of a non-resonant hyperlens in the visible spectral range , 2015, Nature communications.

[159]  G. Bartal,et al.  Nanoscale shaping and focusing of visible light in planar metal─oxide─silicon waveguides , 2015 .

[160]  Ian M. Dobbie,et al.  SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy , 2015, Scientific Reports.

[161]  Peining Li,et al.  Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing , 2015, Nature communications.

[162]  Natalia M. Litchinitser,et al.  Non-resonant hyperlens in the visible range , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[163]  J. Rho,et al.  Metamaterials and imaging , 2015, Nano Convergence.

[164]  Mark A A Neil,et al.  easySTORM: a robust, lower‐cost approach to localisation and TIRF microscopy , 2016, Journal of biophotonics.

[165]  Zengbo Wang,et al.  Spider Silk: Mother Nature's Bio-Superlens. , 2016, Nano letters.

[166]  Christophe Couteau,et al.  Quantum super-oscillation of a single photon , 2015, Light: Science & Applications.

[167]  Zengbo Wang,et al.  Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies , 2015, Science Advances.

[168]  Martin A M Gijs,et al.  Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet. , 2016, Nano letters.

[169]  Karel Fliegel,et al.  SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy , 2015, Bioinform..

[170]  Donghan Lee,et al.  Design for an efficient single photon source based on a single quantum dot embedded in a parabolic solid immersion lens. , 2016, Optics express.