Tunable filters for multispectral imaging of aeronomical features

Abstract Multispectral imaging of optical emissions in the Earth’s upper atmosphere unravels vital information about dynamic phenomena in the Earth-space environment. Wavelength tunable filters allow us to accomplish this without using filter wheels or multiple imaging setups, but with identifiable caveats and trade-offs. We evaluate one such filter, a liquid crystal Fabry–Perot etalon, as a potential candidate for the next generation of imagers for aeronomy. The tunability of such a filter can be exploited in imaging features such as the 6300–6364 A oxygen emission doublet, or studying the rotational temperature of N 2 + in the 4200–4300 A range, observations which typically require multiple instruments. We further discuss the use of this filter in an optical instrument, called the Liquid Crystal Hyperspectral Imager (LiCHI), which will be developed to make simultaneous measurements in various wavelength ranges.

[1]  I. Mcwhirter,et al.  A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon , 1981 .

[2]  N. Ashok,et al.  Piezoelectrically Controlled Scanning Fabry-Perot Spectrometer For Emission Line Studies Of Extended Astronomical Objects , 1988 .

[3]  Supriya Chakrabarti,et al.  HiTIES: A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow , 2001 .

[4]  Sergey Chernouss,et al.  Hyperspectral all-sky imaging of auroras. , 2012, Optics express.

[5]  J. Bland-Hawthorn,et al.  Detection and measurement from narrow‐band tunable filter scans , 2001 .

[6]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[7]  M. Mendillo,et al.  Monochromatic imaging instrumentation for applications in aeronomy of the earth and planets , 1993 .

[8]  M. C. Hutley,et al.  The Fabry Perot interferometer: by J.M. Vaughan , 1990 .

[9]  T. Hallinan,et al.  Fabry-Perot-interferometer imaging system for thermospheric temperature and wind measurements. , 1980, Applied optics.

[10]  R. Bapat,et al.  The generalized Moore-Penrose inverse , 1992 .

[11]  T. Pulkkinen,et al.  Ionospheric shear flow situations observed by the MIRACLE network, and the concept of Harang discontinuity , 2013 .

[12]  Joshua Semeter,et al.  Simultaneous Multispectral Imaging of the Discrete Aurora , 2001 .

[13]  S. Chakrabarti,et al.  HIRISE: a ground-based high-resolution imaging spectrograph using echelle grating for measuring daytime airglow=auroral emissions , 2002 .

[14]  Doran J. Baker,et al.  The rayleigh: interpretation of the unit in terms of column emission rate or apparent radiance expressed in SI units. , 1976, Applied optics.

[15]  N. Ivchenko,et al.  Simultaneous imaging of aurora on small scale in OI (777.4 nm) and N(2)1P to estimate energy and flux of precipitation , 2009 .

[16]  Frequency locking of a tunable liquid‐crystal filter , 1992 .

[17]  John Noto,et al.  Tunable narrow-band filter for LWIR hyperspectral imaging , 2000, Photonics West - Optoelectronic Materials and Devices.

[18]  T. Pulkkinen,et al.  Observations of Substorm Electrodynamics Using the MIRACLE Network , 1998 .

[19]  U. Brändström The Auroral Large Imaging System : design, operation and scientific results , 2003 .

[20]  Alessandro Torricelli,et al.  Four-wavelength time-resolved optical mammograph , 2003, SPIE BiOS.

[21]  N. Ivchenko,et al.  Using spectral characteristics to interpret auroral imaging in the 731.9 nm O+ line , 2008 .

[22]  N. Ivchenko,et al.  Morphology and dynamics of aurora at fine scale: first results from the ASK instrument , 2008 .

[23]  G. Shepherd,et al.  Imaging Fabry-Perot spectrometer for twilight observations. , 1994, Applied optics.

[24]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[25]  Mark Conde,et al.  Spatial structure in the thermospheric horizontal wind above Poker Flat, Alaska, during solar minimum , 1998 .

[26]  Dongyao Jia,et al.  Detection of foreign materials in cotton using a multi-wavelength imaging method , 2005 .

[27]  G. Romick,et al.  The altitude profile of the N2 + first negative rotational temperature in an auroral arc , 1978 .

[28]  R.J. Evans,et al.  Signal Processing for Optical Power Spectrum Monitoring , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[29]  K. Heia,et al.  Multipurpose spectral imager. , 2000, Applied optics.

[30]  G. Daniell,et al.  Rotational temperature of N 2 + (0,2) ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements , 2008 .

[31]  G Hernandez,et al.  Feedback stabilized fabry-perot interferometer. , 1973, Applied optics.

[32]  J. Meriwether,et al.  Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile , 2011 .

[33]  Klaus Pfeilsticker,et al.  Optical studies of polar stratospheric clouds , 1999, Remote Sensing.

[34]  Alessandro Torricelli,et al.  Four-wavelength time-resolved optical mammography in the 680-980-nm range. , 2003, Optics letters.