Presolar Cloud Collapse and the Formation and Early Evolution of the Solar Nebula

We review our current understanding of the formation and early evolution of the solar nebula, the protoplanetary disk from which the solar system formed. Astronomical understanding of the collapse of dense molecular cloud cores to form protostars is relatively advanced, compared to our understanding of the formation processes of planetary systems. Examples exist of nearly all the phases of protostellar evolution, guiding and validating theoretical models of the star formation process. Astronomical observations of suspected protoplanetary disks are beginning to provide key insights into the likely conditions within the solar nebula, although usually only on much larger scales than the regions where the terrestrial and giant planets formed. The primary mechanism for driving the early evolution of the solar nebula, leading finally to the formation of the planetary system, is still highly uncertain: Magnetic fields, gravitational torques, and baroclinic instabilities are among the competing mechanisms. While the discovery of extrasolar gas giant planets has reinforced the general belief that planetary system formation should be a widespread process, the absence of any undisputed evidence for giant protoplanets in the process of formation makes it hard to decide between competing mechanisms for their formation. The situation regarding extrasolar terrestrial planets is even less constrained observationally, although this situation should improve tremendously in the next decade.

[1]  B. Reipurth Disintegrating Multiple Systems in Early Stellar Evolution , 2000 .

[2]  I. Bonnell,et al.  The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.

[3]  Are cosmic rays effective for ionization of protoplanetary disks , 1994 .

[4]  P. Andre' The Evolution of Flows and Protostars , 1997 .

[5]  F. Shu,et al.  Toward an Astrophysical Theory of Chondrites , 1996, Science.

[6]  J. Truran,et al.  The supernova trigger for formation of the solar system , 1977 .

[7]  A. Boss,et al.  On Gas Drag-Induced Rapid Migration of Solids in a Nonuniform Solar Nebula , 2003, astro-ph/0305594.

[8]  S. A. Colgate,et al.  Rossby Wave Instability of Thin Accretion Disks. III. Nonlinear Simulations , 2000, astro-ph/0012479.

[9]  K. Smith,et al.  NGC 1333/IRAS 4: a multiple star formation laboratory , 2000, astro-ph/0004323.

[10]  P. Cassen Nebular thermal evolution and the properties of primitive planetary materials , 2001 .

[11]  A. Boss,et al.  Injection of Radioactive Nuclides from the Stellar Source that Triggered the Collapse of the Presolar Nebula , 1997 .

[12]  Pierre Cartigny,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum – Rich Inclusions , 2022 .

[13]  The Observation of Circumstellar Disks: Dust and Gas Components , 2004, astro-ph/0404191.

[14]  Charles F. Gammie,et al.  Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks , 1995 .

[15]  Local Magnetohydrodynamic Models of Layered Accretion Disks , 2002, astro-ph/0210541.

[16]  D. Fischer,et al.  Extrasolar Planets around Main Sequence Stars , 1999 .

[17]  J. Alves,et al.  Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight , 2001, Nature.

[18]  Turbulence in Accretion Disks: Vorticity Generation and Angular Momentum Transport via the Global Baroclinic Instability , 2002, astro-ph/0211629.

[19]  R. Ash,et al.  Transient Heating Events in the Protoplanetary Nebula , 2006 .

[20]  A. Boss Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation , 2004 .

[21]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[22]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[23]  J. E. Pringle,et al.  A viscosity prescription for a self-gravitating accretion disc⋆ , 1987 .

[24]  A. Boss Evolution of the solar nebula. I. Nonaxisymmetric structure during nebula formation , 1989 .

[25]  Evolution of Disk Accretion , 1999, astro-ph/9902335.

[26]  A. Boss,et al.  Injection of Radioactivities into the Forming Solar System , 2000, astro-ph/0111180.

[27]  M. Gehm,et al.  Short-Lived Nuclides in Hibonite Grains from Murchison : Evidence for Solar System Evolution , 2002 .

[28]  Ji Wang High Energy Processes in Young Stellar Objects , 2008 .

[29]  A. Cameron Some Nucleosynthesis Effects Associated with r-Process Jets , 2003 .

[30]  L. Hartmann,et al.  Protostellar Collapse in a Rotating, Self-gravitating Sheet , 2001 .

[31]  C. Lada,et al.  The Formation of Sunlike Stars , 1990, Science.

[32]  A. K. Vivas,et al.  The CIDA-QUEST large-scale survey of Orion OB1: evidence for rapid disk dissipation in a dispersed stellar population. , 2001, Science.

[33]  A. Boss,et al.  Collapse and Fragmentation of Molecular Cloud Cores. III. Initial Differential Rotation , 1995 .

[34]  Zhi-Yun Li,et al.  X-Winds Theory and Observations , 2000 .

[35]  A. Boss,et al.  Triggering star formation with stellar ejecta , 1996 .

[36]  P. Andre',et al.  Evolution of outflow activity around low mass embedded young stellar objects , 1996 .

[37]  S. Weidenschilling Formation processes and time scales for meteorite parent bodies , 1988 .

[38]  A. Davis,et al.  The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .

[39]  H. Haack,et al.  Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions , 2004, Nature.

[40]  George W. Wetherill,et al.  Rapid Formation of Ice Giant Planets , 2001, astro-ph/0112406.

[41]  R. Durisen,et al.  Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation , 2005, astro-ph/0501592.

[42]  P. Bodenheimer,et al.  Criteria for fragmentation in a collapsing rotating cloud , 1980 .

[43]  An ISOCAM Absorption Survey of the Structure of Pre-stellar Cloud Cores , 2000, astro-ph/0006385.

[44]  B. Sato,et al.  The Spin Temperature of NH3 in Comet C/1999S4 (LINEAR) , 2001, Science.

[45]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[46]  W. Ward,et al.  Disk-Planet Interactions and the Formation of Planetary Systems , 2000 .

[47]  M. Livio,et al.  The Formation and Role of Vortices in Protoplanetary Disks , 1999, astro-ph/9910418.

[48]  C. Gammie,et al.  Transport Processes in Protostellar Disks , 2000 .

[49]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[50]  G. Wasserburg,et al.  Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales , 1996, Science.

[51]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[52]  J. Pollack,et al.  The dynamical evolution of the protosolar nebula , 1991 .

[53]  P. Bodenheimer,et al.  Nonaxisymmetric evolution in protostellar disks , 1994 .

[54]  J. Carpenter,et al.  Distribution of Circumstellar Disk Masses in the Young Cluster NGC 2024 , 2003, astro-ph/0308279.

[55]  Yasuo Fukui,et al.  A Complete Search for Dense Cloud Cores in Taurus , 2002 .

[56]  S. Weidenschilling,et al.  Accretion Dynamics and Timescales: Relation to Chondrites , 2006 .

[57]  P. Bodenheimer,et al.  The Formation of Protostellar Disks. III. The Influence of Gravitationally Induced Angular Momentum Transport on Disk Structure and Appearance , 1999 .

[58]  The Global Baroclinic Instability in Accretion Disks. II. Local Linear Analysis , 2004, astro-ph/0401449.

[59]  G. Chagelishvili,et al.  On hydrodynamic shear turbulence in Keplerian disks: Via transient growth to bypass transition , 2003, astro-ph/0302258.

[60]  Alan P. Boss,et al.  Evolution of the Solar Nebula. VI. Mixing and Transport of Isotopic Heterogeneity , 2004 .

[61]  S. Desch,et al.  A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules , 2002 .

[62]  L. Nittler,et al.  Meteorites and the Chemical Evolution of the Milky Way , 2005 .

[63]  R. Kawabe,et al.  High Angular Resolution, Sensitive CS J = 2-1 and J = 3-2 Imaging of the Protostar L1551 NE: Evidence for Outflow-triggered Star Formation? , 2003, astro-ph/0306086.

[64]  A. Boss TEMPERATURES IN PROTOPLANETARY DISKS , 1998 .

[65]  D. Lin,et al.  Orbital Evolution and Planet-Star Tidal Interaction , 2000 .

[66]  G. Wasserburg,et al.  Aluminum‐26 in calcium‐aluminum‐rich inclusions and chondrules from unequilibrated ordinary chondrites , 2001 .

[67]  D. Johnstone,et al.  Photoevaporation of the Solar Nebula and the Formation of the Giant Planets , 1993 .

[68]  A. Boss,et al.  Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks , 2000, The Astrophysical journal.

[69]  John F. Hawley,et al.  A Powerful Local Shear Instability in Weakly Magnetized Disks. II. Nonlinear Evolution , 1991 .

[70]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[71]  Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.

[72]  S. Inutsuka,et al.  Criteria for Fragmentation of Rotating Isothermal Clouds. I. Semianalytic Approach , 1999 .

[73]  P. Cassen,et al.  Astronomical constraints on nebular temperatures: Implications for planetesimal formation , 1999 .

[74]  R. H. Miller,et al.  Numerical experiments on the stability of preplanetary disks , 1981 .

[75]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[76]  P. Cassen Models for the fractionation of moderately volatile elements in the solar nebula , 1996 .

[77]  W. M. Kaula,et al.  A tidal theory for the origin of the solar nebula , 1979 .

[78]  S. Weidenschilling From icy grains to comets , 2004 .

[79]  S. Basu,et al.  On the intrinsic shape of molecular clouds , 2003 .

[80]  D. Hollenbach Disk Dispersal Around Young Stars , 1999 .

[81]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[82]  A. Boss,et al.  Injection of Radioactivities into the Presolar Cloud: Convergence Testing , 2000 .

[83]  S. Weidenschilling,et al.  Particle-Gas Dynamics and Primary Accretion , 2006 .

[84]  Ny,et al.  ACCRETION DISKS AROUND YOUNG OBJECTS. III. GRAIN GROWTH , 2001, astro-ph/0101443.

[85]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[86]  A. Boss From Molecular Clouds to Circumstellar Disks , 2005 .

[87]  Shapes of Molecular Cloud Cores and the Filamentary Mode of Star Formation , 2002, astro-ph/0206311.

[88]  J. Najita,et al.  X-Ray Ionization of Protoplanetary Disks , 1997 .

[89]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[90]  T. Mouschovias Magnetic braking, ambipolar diffusion, cloud cores, and star formation: Natural length scales and protostellar masses , 1991 .

[91]  L. Hartmann,et al.  The FU Orionis Phenomenon , 1996 .

[92]  A. Boss Collapse and Fragmentation of Molecular Cloud Cores. VII. Magnetic Fields and Multiple Protostar Formation , 2002 .

[93]  A. Cameron,et al.  Numerical Simulations of Triggered Star Formation. I. Collapse of Dense Molecular Cloud Cores , 1998 .

[94]  S. Weidenschilling,et al.  Timescales of the Solar Protoplanetary Disk , 2006 .

[95]  B. Dubrulle Differential Rotation as a Source of Angular Momentum Transfer in the Solar Nebula , 1993 .

[96]  Anthony G. A. Brown,et al.  Exploring the Full Stellar Population of the Upper Scorpius OB Association , 2002 .

[97]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[98]  Ralph E. Pudritz,et al.  Disk Winds and the Accretion--Outflow Connection , 1999 .

[99]  The FU Orionis Phenomenon and Solar Nebula Material , 2001 .

[100]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[101]  Fred C. Adams,et al.  Sling amplification and eccentric gravitational instabilities in gaseous disks , 1990 .

[102]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[103]  Sabine Frink,et al.  The History of Low-Mass Star Formation in the Upper Scorpius OB Association , 1999 .

[104]  M. Livio,et al.  On the Nonlinear Hydrodynamic Stability of Thin Keplerian Disks , 1998, astro-ph/9812082.

[105]  D. Lin,et al.  On the structure and evolution of the primordial solar nebula , 1980 .