Choosing Integer Parameters in Subspace Methods: A Survey on Asymptotic Results

Abstract When using subspace methods, the user has to specify a number of integer parameters. This paper surveys the literature on results relating to strategies for these choices and the consequences thereof. All results are asymptotic in nature and relate either to consistency questions or to the asymptotic covariance matrix of the estimated systems.

[1]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..

[2]  Magnus Jansson On subspace methods in system identification and sensor array signal processing , 1997 .

[3]  Dietmar Bauer,et al.  Order estimation for subspace methods , 2001, Autom..

[4]  D. Bauer Some asymptotic theory for the estimation of linear systems using maximum likelihood methods or subspace algorithms , 1998 .

[5]  Dietmar Bauer,et al.  Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs , 1999, Autom..

[6]  Alessandro Chiuso,et al.  Asymptotic Variances of Subspace Identification by Data Orthogonalization and Model Decoupling , 2003 .

[7]  Manfred Deistler,et al.  Consistency and relative efficiency of subspace methods , 1994, Autom..

[8]  Bo Wahlberg,et al.  On Consistency of Subspace Methods for System Identification , 1998, Autom..

[9]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[10]  Lennart Ljung,et al.  Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms , 2002, Autom..

[11]  George Kapetanios,et al.  Testing the rank of the Hankel covariance matrix: a statistical approach , 2001, IEEE Trans. Autom. Control..

[12]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[13]  Dietmar Bauer,et al.  Analysis of the asymptotic properties of the MOESP type of subspace algorithms , 2000, Autom..

[14]  Joakim Sorelius Subspace-based parameter estimation problems in signal processing , 1999 .