Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits

From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. At first, the problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900). The first nontrivial results were obtained in Bautin's works, which...

[1]  Noel G. Lloyd,et al.  Kukles revisited: Advances in computing techniques , 2010, Comput. Math. Appl..

[2]  Gennady A. Leonov On the problem of estimation of the number of cycles in two-dimensional quadratic systems from the viewpoint of nonlinear mechanics , 1998 .

[3]  Marco Sabatini,et al.  A survey of isochronous centers , 1999 .

[4]  A. LeonovG. Lyapunov quantities , limit cycles and strange behavior of trajectories in two-dimensional quadratic systems , 2008 .

[5]  B. D. Coller,et al.  Structural non-linearities and the nature of the classic flutter instability , 2004 .

[6]  G.L. Fredendall,et al.  Automatic Frequency and Phase Control of Synchronization in Television Receivers , 1943, Proceedings of the IRE.

[7]  Nikolay V. Kuznetsov,et al.  Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems , 2011 .

[8]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[9]  Carlos Gutierrez,et al.  A solution to the bidimensional Global Asymptotic Stability Conjecture , 1995 .

[10]  Engelbert Hubbers,et al.  A polynomial counterexample to the Markus-Yamabe conjecture , 1997 .

[11]  Henk Nijmeijer,et al.  Analysis of Friction-Induced Limit Cycling in an Experimental Drill-String System , 2004 .

[12]  J. Giné On some open problems in planar differential systems and Hilbert’s 16th problem , 2007 .

[13]  Y. Chen,et al.  Computation of Lyapunov values for two planar polynomial differential systems , 2008, Appl. Math. Comput..

[14]  Jibin Li,et al.  Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields , 2003, Int. J. Bifurc. Chaos.

[15]  Nikolay V. Kuznetsov,et al.  Cycles of two-dimensional systems: Computer calculations, proofs, and experiments , 2008 .

[16]  Y. Ilyashenko,et al.  Finiteness Theorems for Limit Cycles , 1991 .

[17]  Li Xin Cheng,et al.  On Hereditarily Indecomposable Banach Spaces , 2006 .

[18]  Allen Labryer,et al.  A harmonic balance approach for large-scale problems in nonlinear structural dynamics , 2010 .

[19]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[20]  R. Fitts,et al.  Two counterexamples to Aizerman's conjecture , 1966 .

[21]  Gennady A. Leonov,et al.  On the harmonic linearization method , 2009 .

[22]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[23]  S. Smale Mathematical problems for the next century , 1998 .

[24]  Nikolay V. Kuznetsov,et al.  A direct method for calculating Lyapunov quantities of two-dimensional dynamical systems , 2011 .

[25]  Fang Wang,et al.  A quartic system and a quintic system with fine focus of order 18 , 2008 .

[26]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[27]  Alberto Tesi,et al.  Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics , 1996, Autom..

[28]  Gennady A. Leonov,et al.  Four Normal Size Limit Cycles in Two-Dimensional Quadratic Systems , 2011, Int. J. Bifurc. Chaos.

[29]  Yu Qiu,et al.  On the focus order of planar polynomial differential equations , 2009 .

[30]  Javier Aracil,et al.  Describing function method for stability analysis of PD and PI fuzzy controllers , 2000, Fuzzy Sets Syst..

[31]  Michael Margaliot,et al.  Absolute stability of third-order systems: A numerical algorithm , 2006, Autom..

[32]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[33]  Gennady A. Leonov,et al.  Evaluation of the first five Lyapunov exponents for the Liénard system , 2009 .

[34]  H. Dulac,et al.  Sur les cycles limites , 1923 .

[35]  Jaume Giné,et al.  Implementation of a new algorithm of computation of the Poincaré-Liapunov constants , 2004 .

[36]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[37]  Guanrong Chen,et al.  Computation of focus values with applications , 2008 .

[38]  Jaume Llibre,et al.  The Geometry of Quadratic Differential Systems with a Weak Focus of Second Order , 2006, Int. J. Bifurc. Chaos.

[39]  Gennady A. Leonov,et al.  Lyapunov quantities and limit cycles of two-dimensional dynamical systems. Analytical methods and symbolic computation , 2010 .

[40]  Jaume Giné,et al.  On the number of algebraically independent Poincaré-Liapunov constants , 2007, Appl. Math. Comput..

[41]  Kangsheng Chen,et al.  Experimental study on tracking the state of analog Chua's circuit with particle filter for chaos synchronization , 2008 .

[42]  A. R. Bergen,et al.  Justification of the Describing Function Method , 1971 .

[43]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[44]  Earl H. Dowell,et al.  A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator , 2006, J. Comput. Phys..

[45]  Pei Yu,et al.  COMPUTATION OF NORMAL FORMS VIA A PERTURBATION TECHNIQUE , 1998 .

[46]  Gennady A. Leonov Hilbert's 16th Problem for Quadratic Systems: New Methods Based on a Transformation to the Lienard equation , 2008, Int. J. Bifurc. Chaos.

[47]  Nikolay V. Kuznetsov,et al.  Algorithm for constructing counterexamples to the Kalman problem , 2010 .

[48]  A. A. Glutsuk Asymptotic stability of linearizations of a planar vector field with a singular point implies global stability , 1995 .

[49]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[50]  Li Feng,et al.  Classification of the centers and isochronicity for a class of quartic polynomial differential systems , 2012 .

[51]  Douglas S. Shafer,et al.  Symbolic computation and the cyclicity problem for singularities , 2012, J. Symb. Comput..

[52]  Nikolay V. Kuznetsov,et al.  On problems of Aizerman and Kalman , 2010 .

[53]  Eleonora Bilotta,et al.  A Gallery of Chua Attractors: (With DVD-ROM) , 2008 .

[54]  A. A. Andronov CHAPTER VIII – THE METHOD OF THE POINT TRANSFORMATIONS IN PIECE-WISE LINEAR SYSTEMS† , 1966 .

[55]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[56]  Jinxiong Zhou,et al.  Incremental harmonic balance method for predicting amplitudes of a multi-d.o.f. non-linear wheel shimmy system with combined Coulomb and quadratic damping , 2005 .

[57]  Nikolay V. Kuznetsov,et al.  Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems , 2011 .

[58]  Chengzhi Li,et al.  A cubic system with thirteen limit cycles , 2009 .

[59]  M. R. Liberzon Essays on the absolute stability theory , 2006 .

[60]  Maoan Han,et al.  Lower bounds for the Hilbert number of polynomial systems , 2012 .

[61]  Jaume Giné,et al.  Limit cycle bifurcations from a non-degenerate center , 2012, Appl. Math. Comput..

[62]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit , 2013 .

[63]  Zhang Pingguang On the distribution and number of limit cycles for quadratic systems with two foci , 2002 .

[64]  Nathan van de Wouw,et al.  Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities , 2009, Autom..

[65]  L. Chua,et al.  Canonical realization of Chua's circuit family , 1990 .

[66]  Robert Feßler,et al.  A proof of the two-dimensional Markus-Yamabe Stability Conjecture and a generalization , 1995 .

[67]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[68]  H. Zoladek,et al.  Eleven small limit cycles in a cubic vector field , 1995 .

[69]  Nikolay V. Kuznetsov,et al.  Analytical Method for Computation of Phase-Detector Characteristic , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[70]  Víctor Mañosa,et al.  An Explicit Expression of the First Liapunov and Period Constants with Applications , 1997 .

[71]  W. A. Coppel,et al.  A new class of quadratic systems , 1991 .

[72]  G. Leonov,et al.  Hidden Oscillations in Dynamical Systems. 16 Hilbert’s Problem, Aizerman’s and Kalman’s Conjectures, Hidden Attractors in Chua’s Circuits , 2014 .

[73]  Dana Schlomiuk,et al.  Geometry of quadratic di erential systems in the neighborhood of infinity , 2005 .

[74]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Methods for Hidden Attractors’ Localization: The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits , 2013 .

[75]  N. Barabanov,et al.  On the Kalman problem , 1988 .

[76]  Tanmoy Banerjee,et al.  Single amplifier biquad based inductor-free Chua’s circuit , 2012, 1210.8409.

[77]  Gennady A. Leonov Necessary and sufficient conditions for the boundedness of solutions to two-dimensional quadratic systems in a positively invariant half-plane , 2010 .

[78]  J. K. Liu,et al.  An incremental method for limit cycle oscillations of an airfoil with an external store , 2012 .

[79]  Gennady A. Leonov,et al.  Efficient methods in the search for periodic oscillations in dynamical systems , 2010 .

[80]  Y. Ilyashenko,et al.  Dulac's memoir “On limit cycles” and related problems of the local theory of differential equations , 1985 .

[81]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[82]  Nikolay V. Kuznetsov,et al.  Visualization of Four Normal Size Limit Cycles in Two-Dimensional Polynomial Quadratic System , 2013 .

[83]  JAUME LLIBRE,et al.  Singular Points of Quadratic Systems: a Complete Classification in the Coefficient Space R12 , 2008, Int. J. Bifurc. Chaos.

[84]  Jayanta Kumar Pal,et al.  On the geometry in the neighborhood of infinity of quadratic differential systems with a weak focus , 2001 .

[85]  Maciej Borodzik,et al.  Small amplitude limit cycles for the polynomial Liénard system , 2008 .

[86]  N. Gubar,et al.  Investigation of a piecewise linear dynamical system with three parameters , 1961 .

[87]  Jaume Llibre,et al.  Algebraic determination of limit cycles in a family of three-dimensional piecewise linear differenti , 2011 .

[88]  Nikolay V. Kuznetsov,et al.  Computation of phase detector characteristics in synchronization systems , 2011 .

[89]  Nikolay V. Kuznetsov,et al.  Limit cycles of quadratic systems with a perturbed weak focus of order 3 and a saddle equilibrium at infinity , 2010 .

[90]  Pei Yu,et al.  Symbolic computation of limit cycles associated with Hilbert’s 16th problem , 2009 .

[91]  Erik Noldus,et al.  A counterpart of Popov's theorem for the existence of periodic solutions† , 1971 .

[92]  Gennady A. Leonov,et al.  Limit cycles of the lienard equation with discontinuous coefficients , 2009 .

[93]  N. G. Lloyd,et al.  New Directions in Dynamical Systems: Limit Cycles of Polynomial Systems – Some Recent Developments , 1988 .

[94]  Gennady A. Leonov,et al.  On the method of harmonic linearization , 2009 .

[95]  Gennady A. Leonov Four limit cycles in quadratic two-dimensional systems with a perturbed first-order weak focus , 2010 .

[96]  A. Bergen,et al.  Describing functions revisited , 1975 .

[97]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .