A performance study of NURBS-based isogeometric analysis for interior two-dimensional time-harmonic acoustics

Abstract This work evaluates the performance of a NURBS-based isogeometric finite element formulation for solving stationary acoustic problems in two dimensions. An initial assessment is made by studying eigenvalue problems for a square and a circular domain. The spectral approximation properties of NURBS functions of varying order are compared to those of conventional polynomials and are found to be superior, yielding more accurate representations of eigenvalues as well as eigenmodes. The higher smoothness of NURBS shape functions yields better approximations over an extended frequency range when compared to conventional polynomials. Two numerical case studies, including a geometrically complex domain, are used to benchmark the method versus the traditional finite element method. A convergence analysis confirms the higher efficiency of the isogeometric method on a per-degree-of-freedom basis. Simulations over a wider frequency range also illustrate that the method suffers less from the dispersion effects that deteriorate the acoustic response towards higher frequencies. The tensor product structure of NURBS, however, also imposes practical considerations when modelling a complex geometry consisting of multiple patches.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[3]  Panagiotis D. Kaklis,et al.  Ship-hull shape optimization with a T-spline based BEM-isogeometric solver , 2015 .

[4]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[5]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[6]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[7]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[8]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .

[9]  Martin Ochmann,et al.  Boundary Element Acoustics Fundamentals and Computer Codes , 2002 .

[10]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[11]  M. Vorländer Simulation of the transient and steady‐state sound propagation in rooms using a new combined ray‐tracing/image‐source algorithm , 1989 .

[12]  I. Babuska,et al.  The generalized finite element method , 2001 .

[13]  S. Bordas,et al.  Geometry-Independent Field approximaTion: CAD-Analysis Integration, geometrical exactness and adaptivity , 2014 .

[14]  Anh-Vu Vuong,et al.  Fundamental aspects of shape optimization in the context of isogeometric analysis , 2015 .

[15]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[16]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[17]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[18]  Wim Desmet,et al.  The wave based method: An overview of 15 years of research , 2014 .

[19]  M. Cox The Numerical Evaluation of B-Splines , 1972 .

[20]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[21]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[22]  R. Lyon,et al.  Theory and Application of Statistical Energy Analysis , 2014 .

[23]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[24]  Wim Desmet,et al.  Maximum-entropy methods for time-harmonic acoustics , 2016 .

[25]  Antonio Huerta,et al.  3D NURBS‐enhanced finite element method (NEFEM) , 2008 .

[26]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[27]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[28]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[29]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[30]  L. Thompson A review of finite-element methods for time-harmonic acoustics , 2006 .

[31]  Jens Markus Melenk,et al.  An analysis of discretizations of the Helmholtz equation in L2 and in negative norms , 2014, Comput. Math. Appl..

[32]  P. Bouillard,et al.  Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications , 1999 .

[33]  Paul Sas,et al.  Modal Analysis Theory and Testing , 2005 .

[34]  Pierre Ladevèze,et al.  The variational theory of complex rays: a predictive tool for medium-frequency vibrations , 2003 .

[35]  Thomas-Peter Fries,et al.  Fast Isogeometric Boundary Element Method based on Independent Field Approximation , 2014, ArXiv.

[36]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[37]  Bert Jüttler,et al.  Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .

[38]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[39]  Stéphane Bordas,et al.  Stress analysis without meshing: isogeometric boundary-element method , 2013 .

[40]  Marino Arroyo,et al.  Blending isogeometric analysis and local maximum entropy meshfree approximants , 2013 .

[41]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[42]  Onur Atak,et al.  An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains , 2017 .

[43]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[44]  J. W. Brown,et al.  Fourier series and boundary value problems , 1941 .

[45]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[46]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[47]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[48]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[49]  Onur Atak,et al.  An isogeometric indirect boundary element method for Helmholtz problems , 2014 .