Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission

During membrane budding, coatomer drives initial curvature of the bud, whereas dimeric Arf1 is necessary for membrane scission.

[1]  Simon C Watkins,et al.  Sar1 assembly regulates membrane constriction and ER export , 2010, The Journal of cell biology.

[2]  J. Prestegard,et al.  Dynamic structure of membrane-anchored Arf•GTP , 2010, Nature Structural &Molecular Biology.

[3]  P. Bassereau,et al.  ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions , 2010, The EMBO journal.

[4]  Sandra L. Schmid,et al.  Conserved Functions of Membrane Active GTPases in Coated Vesicle Formation , 2009, Science.

[5]  R. Beck,et al.  The COPI system: Molecular mechanisms and function , 2009, FEBS letters.

[6]  F. Wieland,et al.  Following the Fate In Vivo of COPI Vesicles Generated In Vitro , 2009, Traffic.

[7]  V. Hsu,et al.  The evolving understanding of COPI vesicle formation , 2009, Nature Reviews Molecular Cell Biology.

[8]  R. Beck,et al.  ArfGAP1 Activity and COPI Vesicle Biogenesis , 2009, Traffic.

[9]  R. Beck,et al.  Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking , 2008, The Journal of cell biology.

[10]  Patricia Bassereau,et al.  COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension , 2008, Proceedings of the National Academy of Sciences.

[11]  P. De Camilli,et al.  Arf1-GTP-induced Tubule Formation Suggests a Function of Arf Family Proteins in Curvature Acquisition at Sites of Vesicle Budding* , 2008, Journal of Biological Chemistry.

[12]  E. Hurt,et al.  Membrane curvature induced by Arf1-GTP is essential for vesicle formation , 2008, Proceedings of the National Academy of Sciences.

[13]  B. Peter,et al.  Arf family GTP loading is activated by, and generates, positive membrane curvature , 2008, The Biochemical journal.

[14]  F. Wieland,et al.  Multiple and Stepwise Interactions Between Coatomer and ADP‐Ribosylation Factor‐1 (Arf1)‐GTP , 2007, Traffic.

[15]  P. Camilli,et al.  GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission , 2006, Nature.

[16]  B. Antonny,et al.  Real-time assays for the assembly-disassembly cycle of COP coats on liposomes of defined size. , 2005, Methods in enzymology.

[17]  S. Spanò,et al.  A role for BARS at the fission step of COPI vesicle formation from Golgi membrane , 2005, The EMBO journal.

[18]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[19]  G. Drin,et al.  Cell biology: Helices sculpt membrane , 2005, Nature.

[20]  Randy Schekman,et al.  Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle , 2005, Cell.

[21]  L. Pelletier,et al.  Golgin Tethers Define Subpopulations of COPI Vesicles , 2005, Science.

[22]  Bruno Antonny,et al.  Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature , 2003, Nature.

[23]  M. Boehm,et al.  Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. , 2002, Biochemistry.

[24]  J. Bonifacino,et al.  Functional and physical interactions of the adaptor protein complex AP‐4 with ADP‐ribosylation factors (ARFs) , 2001, EMBO Journal.

[25]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[26]  J. Bonifacino,et al.  The GGAs Promote ARF-Dependent Recruitment of Clathrin to the TGN , 2001, Cell.

[27]  S. Tooze,et al.  Direct and GTP-dependent Interaction of ADP-ribosylation Factor 1 with Clathrin Adaptor Protein AP-1 on Immature Secretory Granules* , 2000, The Journal of Biological Chemistry.

[28]  J. Helms,et al.  GTP-dependent Binding of ADP-ribosylation Factor to Coatomer in Close Proximity to the Binding Site for Dilysine Retrieval Motifs and p23* , 1999, The Journal of Biological Chemistry.

[29]  J. Rothman,et al.  Coupling of Coat Assembly and Vesicle Budding to Packaging of Putative Cargo Receptors , 1999, Cell.

[30]  R. Schekman,et al.  Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Helms,et al.  A Putative Heterotrimeric G Protein Inhibits the Fusion of COPI-coated Vesicles , 1998, The Journal of Biological Chemistry.

[32]  R. Schekman,et al.  COPII-Coated Vesicle Formation Reconstituted with Purified Coat Proteins and Chemically Defined Liposomes , 1998, Cell.

[33]  B. Antonny,et al.  Activation of ADP-ribosylation Factor 1 GTPase-Activating Protein by Phosphatidylcholine-derived Diacylglycerols* , 1997, The Journal of Biological Chemistry.

[34]  J. Helms,et al.  Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  B. Antonny,et al.  A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains , 1996, Nature.

[36]  T. Misteli,et al.  Sorting by COP I-coated vesicles under interphase and mitotic conditions , 1996, The Journal of cell biology.

[37]  P. Chardin,et al.  Myristoylation-facilitated Binding of the G Protein ARF1 to Membrane Phospholipids Is Required for Its Activation by a Soluble Nucleotide Exchange Factor (*) , 1996, The Journal of Biological Chemistry.

[38]  R. Schekman,et al.  COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum , 1994, Cell.

[39]  W. Balch,et al.  Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. , 1994, The Journal of biological chemistry.

[40]  J. Rothman,et al.  Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi- derived COP-coated vesicles , 1993, The Journal of cell biology.

[41]  J. Rothman,et al.  The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein , 1993, Cell.

[42]  J. Rothman,et al.  Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack , 1989, Cell.

[43]  S. Kornfeld,et al.  Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. , 1979, The Journal of biological chemistry.

[44]  F. Wieland,et al.  Receptor-dependent formation of COPI-coated vesicles from chemically defined donor liposomes. , 2001, Methods in enzymology.

[45]  J. Rothman,et al.  Purification of Golgi cisternae-derived non-clathrin-coated vesicles. , 1992, Methods in enzymology.

[46]  R. Beck,et al.  Differential roles of ArfGAP 1 , ArfGAP 2 , and ArfGAP 3 in COPI traffi cking , 2022 .