Hubless keypoint-based 3D deformable groupwise registration

We present a novel algorithm for Fast Registration Of image Groups (FROG), applied to large 3D image groups. Our approach extracts 3D SURF keypoints from images, computes matched pairs of keypoints and registers the group by minimizing pair distances in a hubless way i.e. without computing any central mean image. Using keypoints significantly reduces the problem complexity compared to voxel-based approaches, and enables us to provide an in-core global optimization, similar to the Bundle Adjustment for 3D reconstruction. As we aim to register images of different patients, the matching step yields many outliers. Then we propose a new EM-weighting algorithm which efficiently discards outliers. Global optimization is carried out with a fast gradient descent algorithm. This allows our approach to robustly register large datasets. The result is a set of diffeomorphic half transforms which link the volumes together and can be subsequently exploited for computational anatomy and landmark detection. We show experimental results on whole-body CT scans, with groups of up to 103 volumes. On a benchmark based on anatomical landmarks, our algorithm compares favorably with the star-groupwise voxel-based ANTs and NiftyReg approaches while being much faster. We also discuss the limitations of our approach for lower resolution images such as brain MRI.

[1]  Allan Hanbury,et al.  VISCERAL: Towards Large Data in Medical Imaging - Challenges and Directions , 2012, MCBR-CDS.

[2]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[3]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[4]  Dinggang Shen,et al.  Feature‐based groupwise registration by hierarchical anatomical correspondence detection , 2012, Human brain mapping.

[5]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[6]  Rémy Prost,et al.  The prospects for application of computational anatomy in forensic anthropology for sex determination. , 2019, Forensic science international.

[7]  Daniel Pizarro-Perez,et al.  Stratified Generalized Procrustes Analysis , 2012, International Journal of Computer Vision.

[8]  Arthur W. Toga,et al.  Construction of a 3D probabilistic atlas of human cortical structures , 2008, NeuroImage.

[9]  Nick C Fox,et al.  A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. , 2003, Archives of neurology.

[10]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[11]  Cordelia Schmid,et al.  Action recognition by dense trajectories , 2011, CVPR 2011.

[12]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[13]  Peyman Milanfar,et al.  Fundamental performance limits in image registration , 2003, IEEE Transactions on Image Processing.

[14]  Ghassan Hamarneh,et al.  N-Sift: N-Dimensional Scale Invariant Feature Transform for Matching Medical Images , 2007, ISBI.

[15]  Timothy F. Cootes,et al.  Automatic Construction of Parts+Geometry Models for Initializing Groupwise Registration , 2012, IEEE Transactions on Medical Imaging.

[16]  Christian Früh,et al.  Google Street View: Capturing the World at Street Level , 2010, Computer.

[17]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[18]  Mingquan Zhou,et al.  Interest Point Based Medical Image Retrieval , 2007, MIMI.

[19]  James S. Duncan,et al.  A Robust Point Matching Algorithm for Autoradiograph Alignment , 1996, VBC.

[20]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[21]  Dustin Scheinost,et al.  Whole body nonrigid CT-PET registration using weighted demons , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[22]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[23]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[24]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[25]  Karl J. Friston,et al.  Rigid Body Registration , 2003 .

[26]  Geoffrey McLennan,et al.  Establishing a normative atlas of the human lung: computing the average transformation and atlas construction. , 2012, Academic radiology.

[27]  Christos Davatzikos,et al.  GRAM: A framework for geodesic registration on anatomical manifolds , 2010, Medical Image Anal..

[28]  Sébastien Ourselin,et al.  Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT , 2016, IEEE Transactions on Biomedical Engineering.

[29]  E. Cunha,et al.  DSP: A tool for probabilistic sex diagnosis using worldwide variability in hip-bone measurements , 2005 .

[30]  Joan Serrat,et al.  Evaluation of Methods for Ridge and Valley Detection , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[32]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[33]  Paolo Pirjanian,et al.  The vSLAM Algorithm for Robust Localization and Mapping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[34]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[35]  Dinggang Shen,et al.  SharpMean: Groupwise registration guided by sharp mean image and tree-based registration , 2011, NeuroImage.

[36]  D. Shen,et al.  DICCCOL: dense individualized and common connectivity-based cortical landmarks. , 2013, Cerebral cortex.

[37]  Dinggang Shen,et al.  Hierarchical unbiased graph shrinkage (HUGS): A novel groupwise registration for large data set , 2014, NeuroImage.

[38]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[39]  Thomas Läbe,et al.  GEOMETRIC STABILITY OF LOW-COST DIGITAL CONSUMER CAMERAS , 2012 .

[40]  Torsten Rohlfing,et al.  Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy: Widely Used but Unreliable , 2012, IEEE Transactions on Medical Imaging.

[41]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[42]  Nicholas Ayache,et al.  Non-parametric Diffeomorphic Image Registration with the Demons Algorithm , 2007, MICCAI.

[43]  Rémy Prost,et al.  Hubless 3D Medical Image Bundle Registration , 2016, VISIGRAPP.

[44]  Michel Desvignes,et al.  Automatic 3D Multiorgan Segmentation via Clustering and Graph Cut Using Spatial Relations and Hierarchically-Registered Atlases , 2014, MCV.

[45]  Daniel L. Rubin,et al.  Volumetric Image Registration From Invariant Keypoints , 2017, IEEE Transactions on Image Processing.

[46]  William Wells,et al.  Keypoint Transfer for Fast Whole-Body Segmentation , 2018, IEEE Transactions on Medical Imaging.

[47]  Mert R. Sabuncu,et al.  Multi-atlas segmentation of biomedical images: A survey , 2014, Medical Image Anal..

[48]  Anand Rangarajan,et al.  Groupwise point pattern registration using a novel CDF-based Jensen-Shannon Divergence , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[49]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[50]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Fernando De la Torre,et al.  Robust Regression , 2016, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  J. P. Lewis Fast Normalized Cross-Correlation , 2010 .

[54]  Surya Ganguli,et al.  Identifying and attacking the saddle point problem in high-dimensional non-convex optimization , 2014, NIPS.

[55]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[56]  Tobias Gass,et al.  Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks , 2016, IEEE Transactions on Medical Imaging.

[57]  Jan-Michael Frahm,et al.  Building Rome on a Cloudless Day , 2010, ECCV.

[58]  Angelika Foerster,et al.  An R And S Plus Companion To Applied Regression , 2016 .

[59]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[60]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[61]  Karl Rohr,et al.  Radial basis functions with compact support for elastic registration of medical images , 2001, Image Vis. Comput..

[62]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[63]  Daniel Rueckert,et al.  Diffeomorphic Registration Using B-Splines , 2006, MICCAI.

[64]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[65]  Vladimir Pekar,et al.  Full orientation invariance and improved feature selectivity of 3D SIFT with application to medical image analysis , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[66]  Juha Koikkalainen,et al.  Fast and robust multi-atlas segmentation of brain magnetic resonance images , 2010, NeuroImage.

[67]  Radhe Mohan,et al.  Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. , 2005, Medical physics.

[68]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[69]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[70]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[71]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[72]  James Ze Wang,et al.  Content-based image retrieval: approaches and trends of the new age , 2005, MIR '05.

[73]  Sébastien Ourselin,et al.  Global image registration using a symmetric block-matching approach , 2014, Journal of medical imaging.

[74]  Purang Abolmaesumi,et al.  Group-Wise Registration of Point Sets for Statistical Shape Models , 2012, IEEE Transactions on Medical Imaging.

[75]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .