Estimation of strength and deformation properties of Quaternary caliche deposits

The aim of this study was to develop and evaluate statistical models for predicting the uniaxial compressive strength (UCS) and average Young’s modulus (Eav) for caliches, using some index and physical properties. The caliche samples, from Adana, southern Turkey, were of low strength and difficult to sample. X-ray diffraction and microscopy were undertaken and the following physical parameters established: unit weight, apparent porosity, Schmidt rebound number, Shore hardness, P-wave velocity, slake durability, point load, uniaxial compressive strength and average Young’s modulus. Simple and linear regression variable selection analyses were performed. The best relationships were obtained for UCS with P-wave velocity and unit weight and for average Young’s modulus with P-wave velocity, porosity and slake durability. Empirical equations are proposed, although it is emphasised that these may only be applicable for caliche of a similar geological character.RésuméLe but de cette étude est d’établir et d’évaluer des modèles statistiques permettant de prédire la résistance à la compression simple et le module d’Young de calcrètes à partir de quelques indices et propriétés physiques. Les échantillons de calcrètes d’Adana, dans le sud-est de la Turquie, présentent de faibles résistances et leur échantillonnage est difficile. Des analyses par diffractométrie RX et des observations microscopiques ont été réalisées. Les paramètres physiques suivants ont été déterminés: poids spécifique, porosité, indice de rebond de Schmidt, dureté Shore, vitesse des ondes P, indice d’altérabilité, résistance à l’écrasement entre pointes, résistance à la compression simple et module d’Young. Des analyses de régression linéaire entre ces paramètres ont été réalisées. Les meilleures relations ont été obtenues pour la résistance à la compression simple fonction de la vitesse des ondes P et du poids spécifique et pour le module d’Young fonction de la vitesse des ondes P, de la porosité et de l’indice d’altérabilité. Des équations empiriques ont été proposées, tout en soulignant que ces équations ne sauraient être utilisées que pour des calcrètes aux caractéristiques géologiques semblables.

[1]  A. K. Ghose,et al.  Empirical Strength Indices Of Indian Coals - An Investigation , 1986 .

[2]  Paul M. Santi,et al.  Predicting the unconfined compressive strength of the Breathitt shale using slake durability, Shore hardness and rock structural properties , 1999 .

[3]  S. Kapur,et al.  Soil stratigraphy and Quaternary caliche in the Misis area of the Adana Basin, southern Turkey , 1993 .

[4]  M. Fahy,et al.  Estimating Strength of Sandstone Using Petrographic Thin-Section Data , 1979 .

[5]  I. W. Farmer,et al.  Consistency and repeatability of Schmidt Hammer rebound data during field testing , 1980 .

[6]  T. Ramamurthy,et al.  A comparative evaluation of rock strength measures: Discussion of paper by K. L. Gunsallus and F. H. Kulhawy, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.21, 233–248 (1984) , 1987 .

[7]  Isrm Suggested methods for determining hardness and abrasiveness of rocks , 1978 .

[8]  Bhawani Singh,et al.  Schmidt hammer rebound data for estimation of large scale in situ coal strength , 1984 .

[9]  E. Yaşar,et al.  Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks , 2004 .

[10]  Oded Katz,et al.  Evaluation of mechanical rock properties using a Schmidt Hammer , 2000 .

[11]  D. Deere,et al.  Engineering classification and index properties for intact rock , 1966 .

[12]  Z. Bieniawski Estimating the strength of rock materials , 1974 .

[13]  A. Kidybiński,et al.  Bursting liability indices of coal , 1981 .

[14]  I. Yilmaz,et al.  Correlation of Schmidt hardness with unconfined compressive strength and Young's modulus in gypsum from Sivas (Turkey) , 2002 .

[15]  İ. Çobanoğlu,et al.  Microstructural, geochemical and geomechanical properties of caliche deposits from the Adana Basin, Turkey , 2008 .

[16]  T. Szwedzicki,et al.  International society for rock mechanics commission on testing methods : Draft ISRM suggested methods for determining the indentation hardness index of rock materials , 1998 .

[17]  İ. Çobanoğlu,et al.  Correlation between Schmidt hardness, uniaxial compressive strength and Young’s modulus for andesites, basalts and tuffs , 2004 .

[18]  A. Shakoor,et al.  Relationship Between Petrographic Characteristics, Engineering Index Properties, and Mechanical Properties of Selected Sandstones , 1991 .

[19]  R E Aufmuth,et al.  A SYSTEMATIC DETERMINATION OF ENGINEERING CRITERIA FOR ROCK , 1974 .

[20]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[21]  F. Kulhawy,et al.  A comparative evaluation of rock strength measures , 1984 .

[22]  Murat Karakus,et al.  Predicting elastic properties of intact rocks from index tests using multiple regression modelling , 2005 .

[23]  C. I. Sachpazis Correlating Schmidt hardness with compressive strength and Young's modulus of carbonate rocks , 1991 .

[24]  F. P. Hassani,et al.  The Application Of Strength And Deformation Index Testing To The Stability Assessment Of Coal Measures Excavations , 1983 .

[25]  J. D. O. Horta Calcrete, gypcrete and soil classification in Algeria , 1980 .

[26]  J. O'rourke Rock index properties for geoengineering in underground development , 1989 .

[27]  E. Yaşar,et al.  Estimation of rock physicomechanical properties using hardness methods , 2004 .

[28]  S. Kahraman Evaluation of simple methods for assessing the uniaxial compressive strength of rock , 2001 .

[29]  G. Stournaras,et al.  Correlating uniaxial compressive strength with schmidt hardness, point load index, young's modulus, and mineralogy of gabbros and basalts (Northern Greece) , 1980 .