Distributed Simulation with Cellular Automata: Architecture and Applications

Many fundamental problems from natural sciences deal with complex systems. We define a complex system as a population of unique elements with well defined microscopic attributes and interactions, showing emerging macroscopic behavior. This emergent behavior can, in general, not be predicted from the individual elements and their interactions. A typical example of emergent behavior is self- organization, e.g. Turing patterns in reaction-diffusion systems. Complex systems are often irreducible1 and can not be solved in an analytical way. The only available option to obtain more insight into these systems is through explicit simulation. Many of these problems are intractable: in order to obtain the required macroscopic information, extensive and computationally expensive simulation is necessary. Since simulation models of complex systems require an enormous computational effort, the only feasible way is to apply massively parallel computation. A major challenge is to apply High Performance Computing in research on complex systems and, in addition, to offer a parallel computing environment that is easily accessible for applications [62,63].

[1]  Jonathan Machta The computational complexity of pattern formation , 1993 .

[2]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[3]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[4]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[5]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[6]  Peter M. A. Sloot,et al.  Time warp on a transputer platform: pilot study with asynchronous cellular automata , 1992 .

[7]  Arthur W. Burks,et al.  Essays on cellular automata , 1970 .

[8]  Pierluigi Crescenzi,et al.  Introduction to the theory of complexity , 1994, Prentice Hall international series in computer science.

[9]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Jaap A. Kaandorp,et al.  Fractal modelling - growth and form in biology , 1994 .

[12]  Paul Manneville,et al.  Cellular Automata and Modeling of Complex Physical Systems , 1989 .

[13]  Wentian Li,et al.  The Structure of the Elementary Cellular Automata Rule Space , 1990, Complex Syst..

[14]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[15]  P. Lallemand,et al.  Lattice-gas cellular automata, simple models of complex hydrodynamics , 1998 .

[16]  Cristopher Moore,et al.  Lattice Gas Prediction is P-Complete , 1997, comp-gas/9704001.

[17]  Bernard P. Zeigler,et al.  Theory of Modelling and Simulation , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[19]  James P. Crutchfield,et al.  Dynamics, computation, and the “edge of chaos”: a re-examination , 1993, adap-org/9306003.

[20]  Peter M. A. Sloot,et al.  Growth and form of sponges and corals in a moving fluid , 1999 .

[21]  Peter M. A. Sloot,et al.  Lattice-Boltzmann hydrodynamics on parallel systems , 1998 .

[22]  E. Winfree,et al.  Organizing centers in a cellular excitable medium , 1985 .

[23]  David R. Jefferson,et al.  Virtual time , 1985, ICPP.

[24]  L. Sander Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .

[25]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[26]  Peter M. A. Sloot,et al.  Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method , 1999 .

[27]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[28]  Peter M. A. Sloot,et al.  Implementation aspects of 3d lattice-bgk: Boundaries, accuracy and a new fast relaxation method , 1999 .

[29]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[30]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[31]  P.M.A. Sloot High Performance Simulation , 1995 .

[32]  Rodney A. Brooks,et al.  Asynchrony induces stability in cellular automata based models , 1994 .

[33]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[34]  Peter Grassberger,et al.  Long-range effects in an elementary cellular automaton , 1986 .

[35]  M. Nicol,et al.  AN ANALYSIS OF SCATTER DECOMPOSITION , 2022 .

[36]  James P. Crutchfield Critical Computation, Phase Transitions, and Hierarchical Learning , 2001 .

[37]  Peter M. A. Sloot,et al.  Lattice-boltzmann and finite element simulations of fluid flow in a SMRX mixer , 1999 .

[38]  J. Machta,et al.  The parallel complexity of growth models , 1994 .

[39]  P. A. Dufort,et al.  The complexity and entropy of Turing machines , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[40]  M Mitchell,et al.  The evolution of emergent computation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Peter M. A. Sloot,et al.  Application of time warp to parallel simulations with asynchronous cellular automata , 1993 .

[42]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[43]  Grégoire Nicolis,et al.  Synchronous versus asynchronous dynamics in spatially distributed systems , 1994 .

[44]  P. Gaspard,et al.  Noise, chaos, and (ε,τ)-entropy per unit time , 1993 .

[45]  K. Mani Chandy,et al.  Distributed Simulation: A Case Study in Design and Verification of Distributed Programs , 1979, IEEE Transactions on Software Engineering.

[46]  Boris D. Lubachevsky,et al.  Efficient parallel simulations of dynamic Ising spin systems , 1988 .

[47]  Boris D. Lubachevsky,et al.  Efficient Parallel Simulations of Asynchronous Cellular Arrays , 2005, Complex Syst..

[48]  Bernard P. Zeigler,et al.  Theory of Modelling and Simulation , 1979, IEEE Transactions on Systems, Man and Cybernetics.

[49]  Peter M. A. Sloot,et al.  Large scale simulations of complex systems part i: conceptual framework , 1997 .

[50]  Jaap A. Kaandorp,et al.  Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients , 1999 .

[51]  W. Wilson,et al.  Dynamics of Age-Structured and Spatially Structured Predator-Prey Interactions: Individual-Based Models and Population-Level Formulations , 1993, The American Naturalist.

[52]  A. Hoekstra,et al.  Permeability of Three-Dimensional Random Fiber Webs , 1998 .

[53]  Peter M. A. Sloot,et al.  Breaking the Curse of Dynamics by Task Migration: Pilot Experiments in the Polder Metacomputer , 1997, PVM/MPI.

[54]  Peter M. A. Sloot,et al.  Load Balancing by Redundant Decomposition and Mapping , 1996, HPCN Europe.

[55]  S. Brush History of the Lenz-Ising Model , 1967 .

[56]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[57]  H. Hoefsloot,et al.  International Journal for Numerical Methods in Fluids Lattice-boltzmann and Finite Element Simulations of Fluid Flow in a Smrx Static Mixer Reactor , 2022 .

[58]  Peter M. A. Sloot,et al.  Computational Aspects of Multi-Species Lattice-Gas Automata , 1999, HPCN Europe.

[59]  P E Seiden,et al.  A computer model of cellular interactions in the immune system. , 1992, Immunology today.

[60]  Kaandorp Analysis and synthesis of radiate accretive growth in three dimensions , 1995, Journal of theoretical biology.

[61]  Peter M. A. Sloot,et al.  Task Allocation by Parallel Evolutionary Computing , 1997, J. Parallel Distributed Comput..

[62]  Lowe,et al.  Effect of Nutrient Diffusion and Flow on Coral Morphology. , 1996, Physical review letters.

[63]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[64]  鈴木 増雄 Time-Dependent Statistics of the Ising Model , 1965 .

[65]  L W Buss,et al.  Modern zoophytology: the growth and form of modular organisms. , 1987, Science.

[66]  Bernard P. Zeigler,et al.  Discrete event models for cell space simulation , 1982 .

[67]  Peter M. A. Sloot,et al.  Cellular Automata: Promise and Prospects in Computational Science , 1999, Future Gener. Comput. Syst..

[68]  Peter M. A. Sloot,et al.  A virtual environment for the exploration of diffusion and flow phenomena in complex geometries , 1998, Future Gener. Comput. Syst..

[69]  W. Wilson,et al.  Spatial Instabilities within the Diffusive Lotka-Volterra System: Individual-Based Simulation Results , 1993 .