Informed proposal Monte Carlo

Any search or sampling algorithm for solution of inverse problems needs guidance to be efficient. Many algorithms collect and apply information about the problem on the fly, and much improvement has been made in this way. However, as a consequence of the No-Free-Lunch Theorem, the only way we can ensure a significantly better performance of search and sampling algorithms is to build in as much external information about the problem as possible. In the special case of Markov Chain Monte Carlo (MCMC) sampling we review how this is done through the choice of proposal distribution, and we show how this way of adding more information about the problem can be made particularly efficient when based on an approximate physics model of the problem. A highly non-linear inverse scattering problem with a high-dimensional model space serves as an illustration of the gain of efficiency through this approach.

[1]  Michael I. Jordan,et al.  Variational Consensus Monte Carlo , 2015, NIPS.

[2]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[3]  Edward I. George,et al.  Bayes and big data: the consensus Monte Carlo algorithm , 2016, Big Data and Information Theory.

[4]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[5]  T. Hansen,et al.  Monte Carlo reservoir analysis combining seismic reflection data and informed priors , 2015 .

[6]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[7]  Jan Dettmer,et al.  Sequential trans-dimensional Monte Carlo for range-dependent geoacoustic inversion. , 2011, The Journal of the Acoustical Society of America.

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  Chris Sherlock,et al.  Merging MCMC Subposteriors through Gaussian-Process Approximations , 2016, Bayesian Analysis.

[10]  M. Nawaz,et al.  Rapid Discriminative Variational Bayesian Inversion of Geophysical Data for the Spatial Distribution of Geological Properties , 2019, Journal of Geophysical Research: Solid Earth.

[11]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[12]  P. Pearce PRINCIPLES OF STATISTICAL MECHANICS , 1998 .

[13]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[14]  Christopher Nemeth,et al.  Stochastic Gradient Markov Chain Monte Carlo , 2019, Journal of the American Statistical Association.

[15]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[16]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[17]  Felipe Pereira,et al.  A two-stage Markov chain Monte Carlo method for seismic inversion and uncertainty quantification , 2019, GEOPHYSICS.

[18]  Ole Winther,et al.  Bayesian Structure Learning for Dynamic Brain Connectivity , 2018, AISTATS.

[19]  J. Maclennan,et al.  Joint inversion of seismic and gravity data for lunar composition and thermal state , 2007 .

[20]  Klaus Mosegaard,et al.  Moving Target Monte Carlo , 2020, ArXiv.

[21]  T. Hansen,et al.  Improving the Pattern Reproducibility of Multiple-Point-Based Prior Models Using Frequency Matching , 2015, Mathematical Geosciences.

[22]  Michael Presho,et al.  Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model , 2011 .

[23]  Chong Wang,et al.  Asymptotically Exact, Embarrassingly Parallel MCMC , 2013, UAI.

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  Eric Laloy,et al.  Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network , 2017, ArXiv.

[26]  C. Holland,et al.  Efficient trans-dimensional Bayesian inversion for geoacoustic profile estimation , 2014 .

[27]  David B. Dunson,et al.  Robust and Scalable Bayes via a Median of Subset Posterior Measures , 2014, J. Mach. Learn. Res..

[28]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[29]  Thomas Mejer Hansen,et al.  Linear Waveform Tomography Inversion Using Machine Learning Algorithms , 2019, Mathematical Geosciences.

[30]  A. Fichtner,et al.  Hamiltonian Monte Carlo solution of tomographic inverse problems , 2018, Geophysical Journal International.

[31]  S. Dosso Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach. , 2002, The Journal of the Acoustical Society of America.

[32]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[33]  Knud Skou Cordua,et al.  A Frequency Matching Method: Solving Inverse Problems by Use of Geologically Realistic Prior Information , 2012, Mathematical Geosciences.

[34]  M. Stephens,et al.  fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets , 2014, Genetics.

[35]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[36]  M. Sambridge,et al.  Monte Carlo analysis of inverse problems , 2002 .

[37]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[38]  Klaus Mosegaard,et al.  Limits to Nonlinear Inversion , 2010, PARA.

[39]  Ernesto Della Rossa,et al.  Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion , 2010 .

[40]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[41]  Chong Wang,et al.  Dynamic Language Models for Streaming Text , 2014, TACL.

[42]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[43]  D. Grana,et al.  Joint probabilistic petrophysics-seismic inversion based on Gaussian mixture and Markov chain prior models , 2018 .

[44]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[45]  Eric Laloy,et al.  Inference of multi-Gaussian relative permittivity fields by probabilistic inversion of crosshole ground-penetrating radar data , 2017 .

[46]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[47]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[48]  Andreas Fichtner,et al.  Hamiltonian Monte Carlo solution of tomographic inverse problems , 2019 .

[49]  Ognjen Grujic,et al.  Quantifying Uncertainty in Subsurface Systems , 2018, Quantifying Uncertainty in Subsurface Systems.

[50]  Variational full-waveform inversion , 2020 .

[51]  Eric Laloy,et al.  Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network , 2017, 1710.09196.

[52]  David B. Dunson,et al.  Scalable Bayes via Barycenter in Wasserstein Space , 2015, J. Mach. Learn. Res..

[53]  Bayesian Elastic Full‐Waveform Inversion Using Hamiltonian Monte Carlo , 2020 .

[54]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[55]  Richard J. Boys,et al.  Discussion to "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead , 2011 .

[56]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..