ATLAS: A High-cadence All-sky Survey System

Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the "Asteroid Terrestrial-impact Last Alert System" (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright ($m < 19$) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalogue of 5$\times10^{6}$ sources. This, the first of a series of articles describing ATLAS, is devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient lightcurves.

[1]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[2]  Richard Walters,et al.  REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.

[3]  V. Yu. Terebizh,et al.  New designs of survey telescopes , 2011 .

[4]  P. Giommi,et al.  Localization and broadband follow-up of the gravitational-wave transient GW150914 , 2016, 1602.08492.

[5]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[6]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[7]  Sergey E. Koposov,et al.  Transient astronomy with the Gaia satellite , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  David Polishook,et al.  DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION , 2013, 1304.4236.

[9]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[10]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[11]  D. Bersier,et al.  ASASSN-15lh: A highly super-luminous supernova , 2015, Science.

[12]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[13]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[14]  D. A. Kann,et al.  iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER , 2015, 1504.00673.

[15]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[16]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[17]  Kaspar von Braun,et al.  UNCLOAKING GLOBULAR CLUSTERS IN THE INNER GALAXY , 2007, 1111.5628.

[18]  Armin Rest,et al.  Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve , 2016, 1611.06451.

[19]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[20]  John L. Tonry,et al.  SAGITTARIUS II, DRACO II AND LAEVENS 3: THREE NEW MILKY WAY SATELLITES DISCOVERED IN THE PAN-STARRS 1 3π SURVEY , 2015, 1507.07564.

[21]  V.Yu. Terebizh On the capabilities of survey telescopes of moderate size , 2016 .

[22]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[23]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[24]  A. B. Danilet,et al.  The ASAS-SN bright supernova catalogue – I. 2013–2014 , 2016, 1604.00396.

[25]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[26]  Michael S. Bessell,et al.  Spectrophotometric Libraries, Revised Photonic Passbands, and Zero Points for UBVRI, Hipparcos, and Tycho Photometry , 2011, 1112.2698.

[27]  J. Borovička,et al.  A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors , 2013, Nature.

[28]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[29]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[30]  E. Bellm Volumetric Survey Speed: A Figure of Merit for Transient Surveys , 2016, 1605.02081.

[31]  V. M. Lipunov,et al.  MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817 , 2017, 1710.05461.

[32]  Larry Denneau,et al.  The Pan-STARRS Moving Object Processing System , 2013, 1302.7281.

[33]  Robert Jedicke,et al.  Testing Accuracy and Precision of Existing Photometry Algorithms on Moving Targets , 2013, 1305.5586.

[34]  Saurabh W. Jha,et al.  The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.

[35]  Nozomu Tominaga,et al.  First Release of High-redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic Properties , 2018, The Astrophysical Journal Supplement Series.

[36]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[37]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[38]  Charles Baltay,et al.  The La Silla-QUEST Low Redshift Supernova Survey , 2013 .

[39]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[40]  Stefano Benetti,et al.  Asiago Supernova classification program: blowing out the first two hundred candles , 2014, 1403.7233.

[41]  Armin Rest,et al.  The Foundation Supernova Survey Motivation, design, implementation, and first data release , 2017, 1711.02474.

[42]  Fang Yuan,et al.  SkyMapper Southern Survey: First Data Release (DR1) , 2018, Publications of the Astronomical Society of Australia.

[43]  Armin Rest,et al.  SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium , 2017, 1712.00027.

[44]  John L. Tonry,et al.  An Early Warning System for Asteroid Impact , 2010, 1011.1028.

[45]  Larry Denneau,et al.  DISCOVERY OF MAIN-BELT COMET P/2006 VW139 BY Pan-STARRS1 , 2012, 1202.2126.

[46]  D. Gerdes,et al.  How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets? , 2017, 1710.05845.

[47]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[48]  M. Sullivan,et al.  Superluminous supernovae from PESSTO , 2014, 1405.1325.

[49]  R. J. Wainscoat,et al.  THE EXTREMELY RED, YOUNG L DWARF PSO J318.5338−22.8603: A FREE-FLOATING PLANETARY-MASS ANALOG TO DIRECTLY IMAGED YOUNG GAS-GIANT PLANETS , 2013, 1310.0457.

[50]  Armin Rest,et al.  Observations of the GRB Afterglow ATLAS17aeu and Its Possible Association with GW 170104 , 2017, 1706.00175.

[51]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[52]  H. Rix,et al.  DISCOVERY OF EIGHT z ∼ 6 QUASARS FROM Pan-STARRS1 , 2014, 1405.3986.

[53]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[54]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[55]  Gabe Bloxham,et al.  SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters , 2011, 1106.1475.

[56]  S. P. Worden,et al.  The flux of small near-Earth objects colliding with the Earth , 2002, Nature.

[57]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[58]  R. J. Wainscoat,et al.  FIRST RESULTS FROM Pan-STARRS1: FAINT, HIGH PROPER MOTION WHITE DWARFS IN THE MEDIUM-DEEP FIELDS , 2011, 1110.0060.

[59]  M. Sullivan,et al.  LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE , 2015, 1505.01078.