DNA Nanotechnology for Nucleic Acid Analysis: DX Motif‐Based Sensor

A light on the tiles: A sensor that fluoresces in the presence of specific nucleic acids was designed and characterized. The sensor uses a molecular beacon probe and three adaptor strands to form a five-stranded assembly, a DX-tile, with a specific analyte. This sensor is a highly selective and affordable tool for the real-time analysis of DNA and RNA.

[1]  Masayuki Endo,et al.  Chemical Approaches to DNA Nanotechnology , 2009, Chembiochem : a European journal of chemical biology.

[2]  A. Oser,et al.  Nonradioactive Assay of DNA Hybridization by DNA-Template-Mediated Formation of a Ternary TbIII Complex in Pure Liquid Phase , 1990 .

[3]  M. Masuko,et al.  NUCLEIC ACID HYBRIDIZATION ACCOMPANIED WITH EXCIMER FORMATION FROM TWO PYRENE‐LABELED PROBES , 1995, Photochemistry and photobiology.

[4]  C. Hicks,et al.  Integrating GWAS with gene expression data to dissect the genetic architecture of triple-negative breast cancer , 2011, Genome Biology.

[5]  Weihong Tan,et al.  Superior structure stability and selectivity of hairpin nucleic acid probes with an l-DNA stem , 2007, Nucleic acids research.

[6]  L. Stols,et al.  Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. , 1989, Analytical biochemistry.

[7]  Dmitry M Kolpashchikov,et al.  A binary DNA probe for highly specific nucleic Acid recognition. , 2006, Journal of the American Chemical Society.

[8]  M. Kim,et al.  Intrinsic DNA curvature of double-crossover tiles , 2011, Nanotechnology.

[9]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[10]  Yulia V Gerasimova,et al.  Enzyme-assisted binary probe for sensitive detection of RNA and DNA. , 2010, Chemical communications.

[11]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[12]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.

[13]  G. Valet,et al.  Nicht-radioaktiver DNA-Hybridisierungsnachweis durch DNA-Templat-vermittelte Bildung eines ternären TbIII-Komplexes in rein flüssiger Phase , 1990 .

[14]  Sanjay Tyagi,et al.  Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[15]  Magnus Manske,et al.  An optimized microarray platform for assaying genomic variation in Plasmodium falciparum field populations , 2011, Genome Biology.

[16]  Young Jun Seo,et al.  Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. , 2008, Chemical Society reviews.

[17]  C. Yang,et al.  Molekulartechnische DNA‐Modifizierung: Molecular Beacons , 2009 .

[18]  Jie Chao,et al.  Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate , 2009, Nature nanotechnology.

[19]  Adam T Woolley,et al.  DNA-templated nanofabrication. , 2009, Chemical Society reviews.

[20]  Friedrich C. Simmel,et al.  Nukleinsäure‐basierte molekulare Werkzeuge , 2011 .

[21]  D. Kolpashchikov,et al.  Real-time SNP analysis in secondary-structure-folded nucleic acids. , 2010, Angewandte Chemie.

[22]  P. Stankiewicz,et al.  Structural variation in the human genome and its role in disease. , 2010, Annual review of medicine.

[23]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[24]  Á. Carracedo,et al.  A multiplex assay with 52 single nucleotide polymorphisms for human identification , 2006, Electrophoresis.

[25]  Colin D. Medley,et al.  Molecular engineering of DNA: molecular beacons. , 2009, Angewandte Chemie.

[26]  Phiset Sa-Ardyen,et al.  The flexibility of DNA double crossover molecules. , 2003, Biophysical journal.

[27]  D. Kolpashchikov,et al.  A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences , 2010, Chembiochem : a European journal of chemical biology.

[28]  Rajesh Nayak,et al.  Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. , 2009, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[29]  D. Kolpashchikov Binary malachite green aptamer for fluorescent detection of nucleic acids. , 2005, Journal of the American Chemical Society.

[30]  D. Ye,et al.  Molecular beacons: an optimal multifunctional biological probe. , 2008, Biochemical and biophysical research communications.

[31]  M. Frank-Kamenetskii,et al.  Two sides of the coin: affinity and specificity of nucleic acid interactions. , 2004, Trends in biochemical sciences.

[32]  K. Browne Sequence-specific, self-reporting hairpin inversion probes. , 2005, Journal of the American Chemical Society.

[33]  P. Rubinelli,et al.  Molecular Detection and Differentiation of Infectious Bursal Disease Virus , 2007, Avian diseases.

[34]  Dmitry M. Kolpashchikov,et al.  Binary probes for nucleic acid analysis. , 2010, Chemical reviews.