Multidimensional Continued Fractions, Dynamical Renormalization and KAM Theory
暂无分享,去创建一个
[1] R. G. Cooke. Functional Analysis and Semi-Groups , 1949, Nature.
[2] Calvin C. Moore,et al. ERGODICITY OF FLOWS ON HOMOGENEOUS SPACES. , 1966 .
[3] M. Raghunathan. Discrete subgroups of Lie groups , 1972 .
[4] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[5] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[6] S. Dani. Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. , 1985 .
[7] R. Sagdeev. Nonlinear Phenomena in Plasma Physics and Hydrodynamics , 1986 .
[8] M. R. Herman. Inégalités « a priori » pour des tores lagrangiens invariants par des difféomorphismes symplectiques , 1989 .
[9] Robert S. MacKay,et al. Renormalisation in Area-Preserving Maps , 1993 .
[10] Giovanni Gallavotti,et al. Twistless KAM tori , 1993, chao-dyn/9306003.
[11] J. Lagarias. Geodesic Multidimensional Continued Fractions , 1994 .
[12] G. Gentile,et al. METHODS FOR THE ANALYSIS OF THE LINDSTEDT SERIES FOR KAM TORI AND RENORMALIZABILITY IN CLASSICAL MECHANICS: A review with Some Applications , 1995, chao-dyn/9506004.
[13] J. Yoccoz,et al. Petits diviseurs en dimension 1 , 2018, Astérisque.
[14] G. Gentile,et al. Methods for the Analysis of the Lindstedt Series for Kam Tori and Renormalizability in Classical Mechanics a Review with Some Applications , 1995 .
[15] Cutting Sequences for Geodesic Flow on the Modular Surface and Continued Fractions , 1997, math/9707215.
[16] Dmitry Kleinbock,et al. Flows on homogeneous spaces and Diophantine approximation on manifolds , 1998, math/9810036.
[17] Hans Koch,et al. A renormalization group for Hamiltonians, with applications to KAM tori , 1999, Ergodic Theory and Dynamical Systems.
[18] Antti Kupiainen,et al. KAM Theorem and Quantum Field Theory , 1999 .
[19] Fritz Schweiger,et al. Multidimensional continued fractions , 2000 .
[20] Juan J. Abad,et al. Renormalization and Periodic Orbits¶for Hamiltonian Flows , 2000 .
[21] Renormalisation scheme for vector fields on T2 with a diophantine frequency , 2001, math/0105067.
[22] Jean-Christophe Yoccoz,et al. Analytic linearization of circle diffeomorphisms , 2002 .
[23] D. M. Hardcastle,et al. The d-Dimensional Gauss Transformation: Strong Convergence and Lyapunov Exponents , 2000, Exp. Math..
[24] G. Gentile,et al. Hyperbolic Low-Dimensional Invariant Tori¶and Summations of Divergent Series , 2002 .
[25] H. Koch. On the renormalization of Hamiltonian flows, and critical invariant tori , 2002 .
[26] D. M. Hardcastle. The Three-Dimensional Gauss Algorithm Is Strongly Convergent Almost Everywhere , 2002, Exp. Math..
[27] J. Dias. Renormalization scheme for vector fields on Bbb T2 with a diophantine frequency , 2002 .
[28] Arnaldo Nogueira,et al. Multidimensional Continued Fractions. By Fritz Schweiger. Oxford Science Publications , 2002, Ergodic Theory and Dynamical Systems.
[29] J. Dias. Renormalization of flows on the multidimensional torus close to a KT frequency vector , 2002 .
[30] Artur Avila,et al. Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles , 2003 .
[31] Hans Koch,et al. A renormalization group fixed point associated with the breakup of golden invariant tori , 2004 .
[32] D. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori , 2005 .
[33] Brjuno condition and renormalization for Poincaré flows , 2006 .
[34] K. Khanin,et al. Renormalization of multidimensional Hamiltonian flows , 2006 .