Multidimensional Continued Fractions, Dynamical Renormalization and KAM Theory

AbstractThe disadvantage of ‘traditional’ multidimensional continued fraction algorithms is that it is not known whether they provide simultaneous rational approximations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis we describe a simple algorithm based on the dynamics of flows on the homogeneous space $$SL(d, \mathbb{Z}) \backslash SL(d, \mathbb{R})$$ (the space of lattices of covolume one) that indeed yields best possible approximations to any irrational vector. The algorithm is ideally suited for a number of dynamical applications that involve small divisor problems. As an example, we explicitly construct a renormalization scheme for the linearization of vector fields on tori of arbitrary dimension.

[1]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[2]  Calvin C. Moore,et al.  ERGODICITY OF FLOWS ON HOMOGENEOUS SPACES. , 1966 .

[3]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[4]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[5]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[6]  S. Dani Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. , 1985 .

[7]  R. Sagdeev Nonlinear Phenomena in Plasma Physics and Hydrodynamics , 1986 .

[8]  M. R. Herman Inégalités « a priori » pour des tores lagrangiens invariants par des difféomorphismes symplectiques , 1989 .

[9]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[10]  Giovanni Gallavotti,et al.  Twistless KAM tori , 1993, chao-dyn/9306003.

[11]  J. Lagarias Geodesic Multidimensional Continued Fractions , 1994 .

[12]  G. Gentile,et al.  METHODS FOR THE ANALYSIS OF THE LINDSTEDT SERIES FOR KAM TORI AND RENORMALIZABILITY IN CLASSICAL MECHANICS: A review with Some Applications , 1995, chao-dyn/9506004.

[13]  J. Yoccoz,et al.  Petits diviseurs en dimension 1 , 2018, Astérisque.

[14]  G. Gentile,et al.  Methods for the Analysis of the Lindstedt Series for Kam Tori and Renormalizability in Classical Mechanics a Review with Some Applications , 1995 .

[15]  Cutting Sequences for Geodesic Flow on the Modular Surface and Continued Fractions , 1997, math/9707215.

[16]  Dmitry Kleinbock,et al.  Flows on homogeneous spaces and Diophantine approximation on manifolds , 1998, math/9810036.

[17]  Hans Koch,et al.  A renormalization group for Hamiltonians, with applications to KAM tori , 1999, Ergodic Theory and Dynamical Systems.

[18]  Antti Kupiainen,et al.  KAM Theorem and Quantum Field Theory , 1999 .

[19]  Fritz Schweiger,et al.  Multidimensional continued fractions , 2000 .

[20]  Juan J. Abad,et al.  Renormalization and Periodic Orbits¶for Hamiltonian Flows , 2000 .

[21]  Renormalisation scheme for vector fields on T2 with a diophantine frequency , 2001, math/0105067.

[22]  Jean-Christophe Yoccoz,et al.  Analytic linearization of circle diffeomorphisms , 2002 .

[23]  D. M. Hardcastle,et al.  The d-Dimensional Gauss Transformation: Strong Convergence and Lyapunov Exponents , 2000, Exp. Math..

[24]  G. Gentile,et al.  Hyperbolic Low-Dimensional Invariant Tori¶and Summations of Divergent Series , 2002 .

[25]  H. Koch On the renormalization of Hamiltonian flows, and critical invariant tori , 2002 .

[26]  D. M. Hardcastle The Three-Dimensional Gauss Algorithm Is Strongly Convergent Almost Everywhere , 2002, Exp. Math..

[27]  J. Dias Renormalization scheme for vector fields on Bbb T2 with a diophantine frequency , 2002 .

[28]  Arnaldo Nogueira,et al.  Multidimensional Continued Fractions. By Fritz Schweiger. Oxford Science Publications , 2002, Ergodic Theory and Dynamical Systems.

[29]  J. Dias Renormalization of flows on the multidimensional torus close to a KT frequency vector , 2002 .

[30]  Artur Avila,et al.  Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles , 2003 .

[31]  Hans Koch,et al.  A renormalization group fixed point associated with the breakup of golden invariant tori , 2004 .

[32]  D. Gaidashev Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori , 2005 .

[33]  Brjuno condition and renormalization for Poincaré flows , 2006 .

[34]  K. Khanin,et al.  Renormalization of multidimensional Hamiltonian flows , 2006 .