Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling.

It is shown experimentally and theoretically that photorefractive wave coupling can be used for dramatic (< or approximately 0.025 cm/s) deceleration of light pulses whose width is larger than (or comparable with) the nonlinear response time. This classical nonlinear scheme exhibits similarities with the technique based on the quantum effect of electromagnetically induced transparency. The main distinctive feature of our scheme is amplification of the delayed output pulse. Advantages of the novel technique and its prospects for manipulation with light photons are discussed.