Faster Proof Checking in the Edinburgh Logical Framework

This paper describes optimizations for checking proofs represented in the Edinburgh Logical Framework (LF). The optimizations allow large proofs to be checked efficiently which cannot feasibly be checked using the standard algorithm for LF. The crucial optimization is a form of result caching. To formalize this optimization, a path calculus for LF is developed and shown equivalent to a standard calculus.

[1]  Richard Statman,et al.  Higher-Order Rewriting with Dependent Types , 1999 .

[2]  Frank Pfenning,et al.  Logical Frameworks , 2001, Handbook of Automated Reasoning.

[3]  Gordon D. Plotkin,et al.  Logical frameworks , 1991 .

[4]  George C. Necula,et al.  Efficient representation and validation of proofs , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[5]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[6]  Wai Wong,et al.  Validation of HOL Proofs by Proof Checking , 1999, Formal Methods Syst. Des..

[7]  Fairouz Kamareddine,et al.  Reviewing the Classical and the de Bruijn Notation for [lambda]-calculus and Pure Type Systems , 2001, J. Log. Comput..

[8]  T. Coquand An algorithm for testing conversion in type theory , 1991 .

[9]  David L. Dill,et al.  CVC: A Cooperating Validity Checker , 2002, CAV.

[10]  William M. Farmer,et al.  A Set Theory with Support for Partial Functions , 2000, Stud Logica.

[11]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[12]  David L. Dill,et al.  Checking validities and proofs with CVC and flea , 2002 .

[13]  George C. Necula,et al.  Proof-carrying code , 1997, POPL '97.

[14]  Andrew W. Appel,et al.  Proof-carrying authentication , 1999, CCS '99.

[15]  Claude Kirchner,et al.  The Rho Cube , 2001, FoSSaCS.

[16]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[17]  Tobias Nipkow,et al.  Proof Terms for Simply Typed Higher Order Logic , 2000, TPHOLs.