Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes
暂无分享,去创建一个
[1] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[2] Robert K.-C Chan,et al. A generalized arbitrary Lagrangian-Eulerian method for incompressible flows with sharp interfaces , 1975 .
[3] S. Reich,et al. Numerical methods for Hamiltonian PDEs , 2006 .
[4] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[5] Bruno Després. Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension , 2010 .
[6] Raphaël Loubère,et al. The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics , 2006, J. Comput. Phys..
[7] D. Hicks. The hydrocode convergence problem—part 2 , 1979 .
[8] C. Zemach,et al. CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Revision 1 , 1992 .
[9] E. Fahrenthold,et al. Hamiltonian particle hydrodynamics , 1997 .
[10] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[11] M. Wilkins. Calculation of Elastic-Plastic Flow , 1963 .
[12] Noh's constant-velocity shock problem revisited , 1997 .
[13] Raphaël Loubère,et al. Volume consistency in a staggered grid Lagrangian hydrodynamics scheme , 2008, J. Comput. Phys..
[14] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[15] P. P. Whalen,et al. Algebraic Limitations on Two-Dimensional Hydrodynamics Simulations , 1996 .
[16] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[17] Jeremiah Brackbill. On modelling angular momentum and vorticity in compressible fluid flow , 1987 .
[18] Darryl D. Holm,et al. Multisymplectic formulation of fluid dynamics using the inverse map , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[19] T. Hou,et al. Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .
[20] Darryl D. Holm,et al. Hamiltonian differencing of fluid dynamics , 1985 .
[21] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[22] Pierre-Henri Maire,et al. Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .
[23] AndrewW. Cook,et al. Hyperviscosity for unstructured ALE meshes , 2013 .
[24] J. U. Brackbill,et al. BAAL: a code for calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh , 1975 .
[25] Bruno Després,et al. Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .
[26] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[27] L Howarth. Similarity and Dimensional Methods in Mechanics , 1960 .
[28] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[29] E. Fahrenthold,et al. Discrete Hamilton's equations for viscous compressible fluid dynamics , 1999 .
[30] L. Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .
[31] E. Fahrenthold,et al. Discrete Hamilton's equations for arbitrary Lagrangian–Eulerian dynamics of viscous compressible flow , 2000 .
[32] M. Shashkov,et al. A discrete operator calculus for finite difference approximations , 2000 .
[33] R. Landshoff,et al. A Numerical Method for Treating Fluid Flow in the Presence of Shocks , 1955 .
[34] Donald E. Burton,et al. Exact conservation of energy and momentum in staggered-grid hydrodynamics with arbitrary connectivity , 1991 .
[35] J. Marsden,et al. Asynchronous Variational Integrators , 2003 .
[36] Donald E. Burton,et al. Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .
[37] Tzanio V. Kolev,et al. A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..
[38] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[39] Enzo Tonti,et al. Why starting from differential equations for computational physics? , 2014, J. Comput. Phys..
[40] Stéphane Del Pino. A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates , 2010 .
[41] U. Ascher,et al. On symplectic and multisymplectic schemes for the KdV equation , 2005 .
[42] K. R. Trigger,et al. NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL LAGRANGIAN HYDRODYNAMIC EQUATIONS , 1961 .
[43] E. Hairer,et al. Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.
[44] Ray E. Kidder. Theory of homogeneous isentropic compression and its application to laser fusion , 1974 .
[45] Walter B. Goad. WAT: A Numerical Method for Two-Dimensional Unsteady Fluid Flow , 1960 .
[46] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[47] J. Marsden,et al. Structure-preserving discretization of incompressible fluids , 2009, 0912.3989.
[48] Mark A. Christon,et al. The consistency of pressure‐gradient approximations used in multi‐dimensional shock hydrodynamics , 2009 .
[49] Philip L. Roe,et al. A cell centred Lagrangian Godunov scheme for shock hydrodynamics , 2011 .
[50] A. Veselov. Integrable discrete-time systems and difference operators , 1988 .
[51] E. J. Caramana,et al. Numerical Preservation of Symmetry Properties of Continuum Problems , 1998 .
[52] Jerrold E. Marsden,et al. An Overview of Variational Integrators , 2004 .
[53] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .