Erbium-doped silicon and porous silicon for optoelectronics

[1]  A. Polman,et al.  Origin of the 1.54 μm luminescence of erbium‐implanted porous silicon , 1995 .

[2]  R. Soref,et al.  Strong room‐temperature infrared emission from Er‐implanted porous Si , 1995 .

[3]  H. Bernas,et al.  Deep erbium-ytterbium implantation codoping of low-loss silicon oxynitride waveguides , 1995 .

[4]  Graham T. Reed,et al.  Highly efficient optical phase modulator in SOI waveguides , 1995 .

[5]  G. Hendorfer,et al.  On the local structure of optically active Er centers in Si , 1995 .

[6]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .

[7]  H. Bernas,et al.  Deep high-dose erbium implantation of low-loss silicon oxynitride waveguides , 1994 .

[8]  Graham T. Reed,et al.  Silicon-on-insulator optical rib waveguide loss and mode characteristics , 1994 .

[9]  Graham T. Reed,et al.  Low-loss, single-model optical phase modulator in SIMOX material , 1994 .

[10]  Colette D. Cozean General characteristics and range of applications of the erbium laser , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[11]  Polman,et al.  Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. , 1994, Physical review. B, Condensed matter.

[12]  J. Poate,et al.  Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .

[13]  Alberto Carnera,et al.  Room‐temperature electroluminescence from Er‐doped crystalline Si , 1994 .

[14]  R. Jopson,et al.  Kilowatt pulses at 1.55 mu m from a singlemode erbium-doped fibre amplifier , 1994 .

[15]  Emmanuel Desurvire,et al.  The Golden Age of Optical Fiber Amplifiers , 1994 .

[16]  S. Wen Distributed erbium-doped fiber amplifier for soliton transmission. , 1994, Optics letters.

[17]  F. Priolo,et al.  Electrical and optical characterization of Er‐implanted Si: The role of impurities and defects , 1993 .

[18]  F. Priolo,et al.  Optical activation and excitation mechanisms of Er implanted in Si. , 1993, Physical review. B, Condensed matter.

[19]  M. Lannoo,et al.  The Theory of Rare-Earth Impurities in Semiconductors , 1993 .

[20]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[21]  Needels,et al.  Erbium point defects in silicon. , 1993, Physical review. B, Condensed matter.

[22]  A. Polman,et al.  Optical doping of silicon with erbium by ion implantation , 1993 .

[23]  Y. Xie,et al.  Light Emission from Silicon , 1993, Science.

[24]  N. Ravel,et al.  Recombination processes in erbium-doped MBE silicon , 1993 .

[25]  A. Polman,et al.  Incorporation of high concentrations of erbium in crystal silicon , 1993 .

[26]  P. H. Citrin,et al.  Local structure of 1.54‐μm‐luminescence Er3+ implanted in Si , 1992 .

[27]  F. Namavar,et al.  Low-loss planar optical waveguides fabricated in SIMOX material , 1992, IEEE Photonics Technology Letters.

[28]  F. Namavar,et al.  Visible electroluminescence from porous silicon np heterojunction diodes , 1992 .

[29]  Kenneth T. V. Grattan,et al.  Fiber optic temperature sensor based on the cross referencing between blackbody radiation and fluorescence lifetime , 1992 .

[30]  L. Canham Silicon optoelectronics at the end of the rainbow , 1992 .

[31]  Eugene A. Fitzgerald,et al.  Evaluation of erbium‐doped silicon for optoelectronic applications , 1991 .

[32]  Jurgen Michel,et al.  Impurity enhancement of the 1.54‐μm Er3+ luminescence in silicon , 1991 .

[33]  Jurgen Michel,et al.  The electrical and defect properties of erbium‐implanted silicon , 1991 .

[34]  Kenneth T. V. Grattan,et al.  A novel signal processing scheme for a fluorescence based fiber‐optic temperature sensor , 1991 .

[35]  Levi,et al.  Excitation mechanisms and optical properties of rare-earth ions in semiconductors. , 1991, Physical review letters.

[36]  B. Sealy,et al.  Electrical activation process of erbium implanted in silicon and SIMOX , 1991 .

[37]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[38]  R. Soref,et al.  Optical waveguides in SIMOX structures , 1991, IEEE Photonics Technology Letters.

[39]  R. C. Kistler,et al.  1.54 μm room‐temperature luminescence of MeV erbium‐implanted silica glass , 1990 .

[40]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[41]  M. Salvi,et al.  Optical Activation of Er3+ Implanted in Silicon by Oxygen Impurities , 1990 .

[42]  K. Heasman,et al.  Lattice locations of erbium implants in silicon , 1989 .

[43]  K. Heasman,et al.  Characteristics of rare‐earth element erbium implanted in silicon , 1989 .

[44]  P. Klein,et al.  Photoluminescence decay of 1.54 μm Er3+ emission in Si and III-V semiconductors , 1988 .

[45]  A. Axmann,et al.  1.54‐μm electroluminescence of erbium‐doped silicon grown by molecular beam epitaxy , 1985 .

[46]  John C. Bean,et al.  GexSi1−x/Si strained‐layer superlattice grown by molecular beam epitaxy , 1984 .

[47]  A. Axmann,et al.  1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon , 1983 .

[48]  Robert G. Hunsperger,et al.  Integrated optics, theory and technology , 1982 .

[49]  R. E. Zirkle Biological effects of external X and Gamma radiation. Part I. , 1954 .

[50]  J. V. Vleck The Puzzle of Rare-earth Spectra in Solids. , 1937 .