Direct X-ray observation of trapped CO₂ in a predesigned porphyrinic metal-organic framework.

Metal-organic frameworks (MOFs) are emerging microporous materials that are promising for capture and sequestration of CO2 due to their tailorable binding properties. However, it remains a grand challenge to pre-design a MOF with a precise, multivalent binding environment at the molecular level to enhance CO2 capture. Here, we report the design, synthesis, and direct X-ray crystallographic observation of a porphyrinic MOF, UNLPF-2, that contains CO2-specific single molecular traps. Assembled from an octatopic porphyrin ligand with [Co2(COO)4] paddlewheel clusters, UNLPF-2 provides an appropriate distance between the coordinatively unsaturated metal centers, which serve as the ideal binding sites for in situ generated CO2. The coordination of Co(II) in the porphyrin macrocycle is crucial and responsible for the formation of the required topology to trap CO2. By repeatedly releasing and recapturing CO2, UNLPL-2 also exhibits recyclability.

[1]  L. Wojtas,et al.  Two rare indium-based porous metal–metalloporphyrin frameworks exhibiting interesting CO2 uptake , 2013 .

[2]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[3]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[4]  Jian Zhang,et al.  A "pillar-free", highly porous metalloporphyrinic framework exhibiting eclipsed porphyrin arrays. , 2013, Chemical communications.

[5]  L. Wojtas,et al.  Formation of a metalloporphyrin-based nanoreactor by postsynthetic metal-ion exchange of a polyhedral-cage containing a metal-metalloporphyrin framework. , 2013, Chemistry.

[6]  Perla B. Balbuena,et al.  Porous materials with pre-designed single-molecule traps for CO2 selective adsorption , 2013, Nature Communications.

[7]  Y. Chabal,et al.  Mechanism of carbon dioxide adsorption in a highly selective coordination network supported by direct structural evidence. , 2013, Angewandte Chemie.

[8]  Randall Q. Snurr,et al.  Structure–property relationships of porous materials for carbon dioxide separation and capture , 2012 .

[9]  A. J. Blake,et al.  Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. , 2012, Nature chemistry.

[10]  W. Mori,et al.  Microporous Porphyrin‐Based Metal Carboxylate Frameworks with Various Accessible Metal Sites: [Cu2(MDDCPP)] [M = Zn2+, Ni2+, Pd2+, Mn3+(NO3), Ru2+(CO)] , 2012 .

[11]  L. Wojtas,et al.  Vertex-directed self-assembly of a high symmetry supermolecular building block using a custom-designed porphyrin , 2012 .

[12]  L. Wojtas,et al.  Quest for highly porous metal-metalloporphyrin framework based upon a custom-designed octatopic porphyrin ligand. , 2012, Chemical communications.

[13]  Banglin Chen,et al.  Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalytic oxidation of alkylbenzenes. , 2012, Journal of the American Chemical Society.

[14]  Xiaoling Zhang,et al.  Luminescent Metal‐Organic Frameworks for Selectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells , 2012 .

[15]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[16]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[17]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[18]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[19]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[20]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[21]  L. Wojtas,et al.  Three-dimensional porous metal-metalloporphyrin framework consisting of nanoscopic polyhedral cages. , 2011, Journal of the American Chemical Society.

[22]  Michael O'Keeffe,et al.  Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. , 2011, Inorganic chemistry.

[23]  Hong-Cai Zhou,et al.  Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers. , 2010, Journal of the American Chemical Society.

[24]  Fan Zuo,et al.  Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. , 2010, Journal of the American Chemical Society.

[25]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[26]  Zhiyong Guo,et al.  A bioinspired synthetic approach for building metal-organic frameworks with accessible metal centers. , 2010, Inorganic chemistry.

[27]  D. M. D'Alessandro,et al.  Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .

[28]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[29]  Nathaniel L Rosi,et al.  Tuning MOF CO2 adsorption properties via cation exchange. , 2010, Journal of the American Chemical Society.

[30]  S. Takamizawa,et al.  Host-guest transformational correlations for a gas inclusion co-crystal on changing gas pressure and temperature. , 2009, Chemical communications.

[31]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[32]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[33]  C. Hu,et al.  Structural Variation in Porphyrin Pillared Homologous Series: Influence of Distinct Coordination Centers for Pillars on Framework Topology , 2009 .

[34]  Jie‐Peng Zhang,et al.  Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. , 2009, Journal of the American Chemical Society.

[35]  W. Wong,et al.  Synthesis, Characterization, Singlet‐Oxygen Photogeneration, DNA Photocleavage and Two‐Photon‐Absorption Properties of Some (4‐Cyanophenyl)porphyrins , 2009 .

[36]  H. Fjellvåg,et al.  Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. , 2008, Chemical communications.

[37]  Guanggang Gao,et al.  CO2 coordination by inorganic polyoxoanion in water. , 2008, Journal of the American Chemical Society.

[38]  R. Quadrelli,et al.  The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion , 2007 .

[39]  S. Peng,et al.  Aluminum-magnesium complexes with linearly bridging carbon dioxide. , 2005, Angewandte Chemie.

[40]  L. Zakharov,et al.  A Linear, O-Coordinated η1-CO2 Bound to Uranium , 2004, Science.

[41]  K. Kojima,et al.  Structural determination of physisorbed sites for CO2 and Ar gases inside an organometallic framework , 2003 .

[42]  S. Takamizawa,et al.  Carbon dioxide inclusion phases of a transformable 1D coordination polymer host [Rh2(O2CPh)4(pyz)]n. , 2003, Angewandte Chemie.

[43]  R. Hazen,et al.  Compressibility and high-pressure phase transition of a metalloporphyrin: (5,10,15,20-tetraphenyl-12H,23H-porphinato)cobalt(II) , 1987 .

[44]  E. Stevens Electronic structure of metalloporphyrins. 1. Experimental electron density distribution of (meso-tetraphenylporphinato)cobalt(II) , 1981 .