Robust gain-scheduled autopilot design for spin-stabilized projectiles with a course-correction fuze

Abstract This article explores the design of a pitch/yaw axis load factor autopilot for a class of 155-mm spin-stabilized ammunition which incorporates a novel nose-positioned course correction fuze system used for trajectory correction. The projectile full nonlinear model is discussed and a procedure for obtaining the system q-LPV model necessary for control synthesis is exposed. Important properties relevant to axis cross-coupling, internal modes and stability properties specific to this kind of system are also highlighted. A comparison of full- and reduced-order mixed-sensitivity H ∞ linear compensators with an additional model following constraint for the design of the projectile autopilot is presented. Robust stability with respect to aerodynamic and actuator/sensor modeling uncertainties is verified via standard μ-analysis tools throughout the projectile flight envelope. Nonlinear 7-DoF trajectory simulation results are finally presented for a single or dual control surface actuator configuration.

[1]  Jeff S. Shamma,et al.  Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations , 1993 .

[2]  Pierre Apkarian,et al.  Missile autopilot design via a multi‐channel LFT/LPV control method , 2002 .

[3]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[4]  Anthony J. Calise,et al.  Adaptive Autopilot Design for Guided Munitions , 1998 .

[5]  A. Tsourdos,et al.  Missile autopilot design using quasi-LPV polynomial eigenstructure assignment , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Huibert Kwakernaak,et al.  Robust control and H∞-optimization - Tutorial paper , 1993, Autom..

[7]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[8]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[9]  James Lam,et al.  An application of H∞ design to model-following , 1992 .

[10]  Claude Berner,et al.  Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles , 2011 .

[11]  Mark Costello,et al.  Model Predictive Control of a Direct Fire Projectile Equipped With Canards , 2008 .

[12]  Pierre Apkarian,et al.  Missile autopilot design via a modified LPV synthesis technique , 1999 .

[13]  Min-Jea Tahk,et al.  Roll-pitch-yaw integrated μ-synthesis for high angle-of-attack missiles , 2012 .

[14]  Mark Costello,et al.  Design of a Roll-Stabilized Mortar Projectile with Reciprocating Canards , 2010 .

[15]  Kevin A. Wise,et al.  Bank-to-turn missile autopilot design using loop transfer recovery , 1990 .

[16]  Robert A. Frederick,et al.  Predictive Guidance of a Projectile for Hit-to-Kill Interception , 2009, IEEE Transactions on Control Systems Technology.

[17]  Kevin A. Wise,et al.  Agile missile dynamics and control , 1996 .

[18]  Mark Costello,et al.  Prediction of swerving motion of a dual-spin projectile with lateral pulse jets in atmospheric flight , 2002 .

[19]  Frank Fresconi,et al.  Guidance and Control of a Projectile with Reduced Sensor and Actuator Requirements , 2011 .

[20]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[21]  Mark Costello,et al.  Linear Theory of a Dual-Spin Projectile in Atmospheric Flight , 2000 .

[22]  Peter H. Zipfel,et al.  Modeling and Simulation of Aerospace Vehicle Dynamics , 2001 .

[23]  Spilios Theodoulis,et al.  Guidance and Control Design for a Class of Spin-Stabilized Fin-Controlled Projectiles , 2013 .

[24]  Mark Costello,et al.  Control Authority of a Projectile Equipped with a Controllable Internal Translating Mass , 2008 .

[25]  Eugene A. Morelli,et al.  Aircraft system identification : theory and practice , 2006 .

[26]  Eric Gagnon,et al.  Course Correction Fuze Concept Analysis for In-Service 155 mm Spin-Stabilized Gunnery Projectiles , 2008 .